Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (90)
  • Open Access

    ARTICLE

    Prediction of the Wastewater’s pH Based on Deep Learning Incorporating Sliding Windows

    Aiping Xu1,2, Xuan Zou3, Chao Wang2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1043-1059, 2023, DOI:10.32604/csse.2023.039645

    Abstract To protect the environment, the discharged sewage’s quality must meet the state’s discharge standards. There are many water quality indicators, and the pH (Potential of Hydrogen) value is one of them. The natural water’s pH value is 6.0–8.5. The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard. This paper aims to study the deep learning prediction model of wastewater’s pH. Firstly, the research uses the random forest method to select the data features and then, based on the sliding window, convert the data set into… More >

  • Open Access

    ARTICLE

    Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model

    K. Ravishankar*, C. Jothikumar

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 613-635, 2023, DOI:10.32604/csse.2023.038343

    Abstract Since COVID-19 infections are increasing all over the world, there is a need for developing solutions for its early and accurate diagnosis is a must. Detection methods for COVID-19 include screening methods like Chest X-rays and Computed Tomography (CT) scans. More work must be done on preprocessing the datasets, such as eliminating the diaphragm portions, enhancing the image intensity, and minimizing noise. In addition to the detection of COVID-19, the severity of the infection needs to be estimated. The HSDC model is proposed to solve these problems, which will detect and classify the severity of COVID-19 from X-ray and CT-scan… More >

  • Open Access

    ARTICLE

    CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification

    R. D. Dhaniya1, K. M. Umamaheswari2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1129-1143, 2023, DOI:10.32604/iasc.2023.035905

    Abstract Current revelations in medical imaging have seen a slew of computer-aided diagnostic (CAD) tools for radiologists developed. Brain tumor classification is essential for radiologists to fully support and better interpret magnetic resonance imaging (MRI). In this work, we reported on new observations based on binary brain tumor categorization using HYBRID CNN-LSTM. Initially, the collected image is pre-processed and augmented using the following steps such as rotation, cropping, zooming, CLAHE (Contrast Limited Adaptive Histogram Equalization), and Random Rotation with panoramic stitching (RRPS). Then, a method called particle swarm optimization (PSO) is used to segment tumor regions in an MR image. After… More >

  • Open Access

    ARTICLE

    A Novel Detection Method for Pavement Crack with Encoder-Decoder Architecture

    Yalong Yang1,2,3, Wenjing Xu1,2,3, Yinfeng Zhu4, Liangliang Su1,2,3,*, Gongquan Zhang1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 761-773, 2023, DOI:10.32604/cmes.2023.027010

    Abstract As a current popular method, intelligent detection of cracks is of great significance to road safety, so deep learning has gradually attracted attention in the field of crack image detection. The nonlinear structure, low contrast and discontinuity of cracks bring great challenges to existing crack detection methods based on deep learning. Therefore, an end-to-end deep convolutional neural network (AttentionCrack) is proposed for automatic crack detection to overcome the inaccuracy of boundary location between crack and non-crack pixels. The AttentionCrack network is built on U-Net based encoder-decoder architecture, and an attention mechanism is incorporated into the multi-scale convolutional feature to enhance… More >

  • Open Access

    ARTICLE

    Real-Time Multi-Feature Approximation Model-Based Efficient Brain Tumor Classification Using Deep Learning Convolution Neural Network Model

    Amarendra Reddy Panyala1,2, M. Baskar3,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3883-3899, 2023, DOI:10.32604/csse.2023.037050

    Abstract The deep learning models are identified as having a significant impact on various problems. The same can be adapted to the problem of brain tumor classification. However, several deep learning models are presented earlier, but they need better classification accuracy. An efficient Multi-Feature Approximation Based Convolution Neural Network (CNN) model (MFA-CNN) is proposed to handle this issue. The method reads the input 3D Magnetic Resonance Imaging (MRI) images and applies Gabor filters at multiple levels. The noise-removed image has been equalized for its quality by using histogram equalization. Further, the features like white mass, grey mass, texture, and shape are… More >

  • Open Access

    ARTICLE

    Identification of Rice Leaf Disease Using Improved ShuffleNet V2

    Yang Zhou, Chunjiao Fu, Yuting Zhai, Jian Li, Ziqi Jin, Yanlei Xu*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4501-4517, 2023, DOI:10.32604/cmc.2023.038446

    Abstract Accurate identification of rice diseases is crucial for controlling diseases and improving rice yield. To improve the classification accuracy of rice diseases, this paper proposed a classification and identification method based on an improved ShuffleNet V2 (GE-ShuffleNet) model. Firstly, the Ghost module is used to replace the convolution in the two basic unit modules of ShuffleNet V2, and the unimportant convolution is deleted from the two basic unit modules of ShuffleNet V2. The Hardswish activation function is applied to replace the ReLU activation function to improve the identification accuracy of the model. Secondly, an effective channel attention (ECA) module is… More >

  • Open Access

    ARTICLE

    A Low-Power 12-Bit SAR ADC for Analog Convolutional Kernel of Mixed-Signal CNN Accelerator

    Jungyeon Lee1, Malik Summair Asghar1,2, HyungWon Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4357-4375, 2023, DOI:10.32604/cmc.2023.031372

    Abstract As deep learning techniques such as Convolutional Neural Networks (CNNs) are widely adopted, the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip (SoC). Although conventional CNN accelerators can reduce the computational time of learning and inference tasks, they tend to occupy large chip areas due to many multiply-and-accumulate (MAC) operators when implemented in complex digital circuits, incurring excessive power consumption. To overcome these drawbacks, this work implements an analog convolutional filter consisting of an analog multiply-and-accumulate arithmetic circuit along with an analog-to-digital converter (ADC). This paper introduces the architecture of an analog convolutional… More >

  • Open Access

    ARTICLE

    Multi-Generator Discriminator Network Using Texture-Edge Information

    Kyeongseok Jang1, Seongsoo Cho2, Kwang Chul Son3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3537-3551, 2023, DOI:10.32604/cmc.2023.030557

    Abstract In the proposed paper, a parallel structure type Generative Adversarial Network (GAN) using edge and texture information is proposed. In the existing GAN-based model, many learning iterations had to be given to obtaining an output that was somewhat close to the original data, and noise and distortion occurred in the output image even when learning was performed. To solve this problem, the proposed model consists of two generators and three discriminators to propose a network in the form of a parallel structure. In the network, each edge information and texture information were received as inputs, learning was performed, and each… More >

  • Open Access

    ARTICLE

    Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based on Multi-Scale and Multi Feature Convolution Neural Network

    Wen Long*, Bin Zhu, Huaizheng Li, Yan Zhu, Zhiqiang Chen, Gang Cheng

    Energy Engineering, Vol.120, No.5, pp. 1253-1269, 2023, DOI:10.32604/ee.2023.026395

    Abstract There is instability in the distributed energy storage cloud group end region on the power grid side. In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components show a continuous and stable charging and discharging state, a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed. Firstly, a voltage stability analysis model based on multi-scale and multi feature convolution neural network is constructed, and the multi-scale and multi feature convolution neural network… More >

  • Open Access

    ARTICLE

    Identification of Key Links in Electric Power Operation Based-Spatiotemporal Mixing Convolution Neural Network

    Lei Feng1, Bo Wang1,*, Fuqi Ma1, Hengrui Ma2, Mohamed A. Mohamed3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1487-1501, 2023, DOI:10.32604/csse.2023.035377

    Abstract As the scale of the power system continues to expand, the environment for power operations becomes more and more complex. Existing risk management and control methods for power operations can only set the same risk detection standard and conduct the risk detection for any scenario indiscriminately. Therefore, more reliable and accurate security control methods are urgently needed. In order to improve the accuracy and reliability of the operation risk management and control method, this paper proposes a method for identifying the key links in the whole process of electric power operation based on the spatiotemporal hybrid convolutional neural network. To… More >

Displaying 11-20 on page 2 of 90. Per Page