Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (562)
  • Open Access

    ARTICLE

    Adversarial Learning for Distant Supervised Relation Extraction

    Daojian Zeng1,3, Yuan Dai1,3, Feng Li1,3, R. Simon Sherratt2, Jin Wang3,*

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 121-136, 2018, DOI:10.3970/cmc.2018.055.121

    Abstract Recently, many researchers have concentrated on using neural networks to learn features for Distant Supervised Relation Extraction (DSRE). These approaches generally use a softmax classifier with cross-entropy loss, which inevitably brings the noise of artificial class NA into classification process. To address the shortcoming, the classifier with ranking loss is employed to DSRE. Uniformly randomly selecting a relation or heuristically selecting the highest score among all incorrect relations are two common methods for generating a negative class in the ranking loss function. However, the majority of the generated negative class can be easily discriminated from… More >

  • Open Access

    ARTICLE

    Fingerprint Liveness Detection from Different Fingerprint Materials Using Convolutional Neural Network and Principal Component Analysis

    Chengsheng Yuan1,2,3, Xinting Li3, Q. M. Jonathan Wu3, Jin Li4,5, Xingming Sun1,2

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 357-372, 2017, DOI:10.3970/cmc.2017.053.357

    Abstract Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints, which are made of common fingerprint materials, such as silicon, latex, etc. Thus, to protect our privacy, many fingerprint liveness detection methods are put forward to discriminate fake or true fingerprint. Current work on liveness detection for fingerprint images is focused on the construction of complex handcrafted features, but these methods normally destroy or lose spatial information between pixels. Different from existing methods, convolutional neural network (CNN) can generate high-level semantic representations by learning and concatenating low-level edge and shape features from… More >

Displaying 561-570 on page 57 of 562. Per Page