Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (406)
  • Open Access

    ARTICLE

    Damage Analysis for Mixed Mode Crack Initiation

    Y. Wei, C.L. Chow1, C.T. Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 71-78, 2000, DOI:10.3970/cmes.2000.001.523

    Abstract The paper presents a numerical simulation for mixed mode crack initiation based on the concepts of damage mechanics. A model with two scalar damage variables is introduced for characterization of damage in a material element. Then a tangent modulus tensor is derived for damage-coupled constitutive equations. A failure criterion is developed with the concept of damage accumulation not only to identify the location of damaged element where the crack initiation angle but also to determine the critical load for mixed mode fracture. The damage model developed is incorporated in a general-purpose finite element program ABAQUA More >

  • Open Access

    ARTICLE

    Crack Linkup by Stable Crack Growth

    L. Ma1, A.S. Kobayashi2, S. N. Atluri3, P.W. Tan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 19-26, 2000, DOI:10.3970/cmes.2000.001.471

    Abstract Experimentally determined Tε* and CTOA resistance curves were used to simulate numerically, stable crack growth and the ensuing crack linkup in 0.8 mm thick 2024-T3 aluminum tension specimen with multiple site damage (MSD) subjected to monotonically/cyclically increasing loading. The Tε* integral correctly predicted the crack growth and linkup history as well as the onset of rapid fracture in MSD specimens. The CTOA criterion also predicted the crack growth history but in its present form, could not predict crack linkup and rapid fracture. More >

  • Open Access

    ARTICLE

    General Application of Numerical Green's Functions for SIF Computations With Boundary Elements

    S. Guimarães1, J.C.F. Telles2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 131-139, 2000, DOI:10.3970/cmes.2000.001.433

    Abstract The paper discusses further applications of the hyper-singular boundary integral equation to obtain the Green's function solution to general geometry fracture mechanics problems, such as curved multifracture crack simulation, static and transient dynamic in 2-D, 3-D and plate bending problems. This numerical Green's function (NGF) is implemented into alternative boundary element computer programs, as the fundamental solution, to enhance the scope of alternative applications of the NGF procedure.
    The results to some typical linear fracture mechanics problems are presented. More >

  • Open Access

    ARTICLE

    Micromechanics of Hydride Formation and Cracking in Zirconium Alloys

    J. Lufrano1, P. Sofronis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 119-132, 2000, DOI:10.3970/cmes.2000.001.279

    Abstract Transient hydrogen diffusion and hydride formation coupled with material deformation are studied in Zr-2.5Nb alloys used in the pressure tubes of CANDU nuclear generating stations. The energetics of the hydride formation is revisited and the terminal solid solubility of hydrogen in solution is defined on the basis of the total elastoplastic work done on the system by the forming hydride and the external loads. Probabilistic precipitation of hydride is modeled in the neighborhood of a crack tip under mode I plane strain loading and a uniform initial hydrogen concentration below the stress free terminal solid More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fatigue Crack Growth in Microelectronics Solder Joints

    K. Kaminishi1, M. Iino2, H. Bessho2, M. Taneda3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 107-110, 2000, DOI:10.3970/cmes.2000.001.107

    Abstract An FEA (finite element analysis) program employing a new scheme for crack growth analysis is developed and a prediction method for crack growth life is proposed. The FEA program consists of the subroutines for the automatic element re-generation using the Delaunay Triangulation technique, the element configuration in the near-tip region being provided by a super-element, elasto-inelastic stress analyses, prediction of crack extension path and calculation of fatigue life. The FEA results show that crack extension rate and path are controlled by a maximum opening stress range, Δσθmax, at a small radial distance of r = d, where More >

  • Open Access

    ARTICLE

    Cracking of GSO Single Crystal Induced by Thermal Stress

    N. Miyazaki1, T. Tamura2, K. Yamamoto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 99-106, 2000, DOI:10.3970/cmes.2000.001.099

    Abstract Quantitative estimation of the failure of a gadolinium orthosilicate (Gd2SiO5, hereafter abbreviated as GSO) single crystal induced by thermal stress was investigated. A GSO cylindrical test specimen was heated in a silicone oil bath, then subjected to large thermal stress by room temperature silicone oil. Cracking occurred during cooling. The transient heat conduction analysis was performed to obtain temperature distribution in the test specimen at the time of cracking, using the surface temperatures measured in the test. Then the thermal stress was calculated using the temperature profile of the test specimen obtained from the heat conduction… More >

Displaying 401-410 on page 41 of 406. Per Page