Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (276)
  • Open Access

    ARTICLE

    Generalized Jaccard Similarity Based Recurrent DNN for Virtualizing Social Network Communities

    R. Gnanakumari1,*, P. Vijayalakshmi2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2719-2730, 2023, DOI:10.32604/iasc.2023.034145 - 15 March 2023

    Abstract In social data analytics, Virtual Community (VC) detection is a primary challenge in discovering user relationships and enhancing social recommendations. VC formation is used for personal interaction between communities. But the usual methods didn’t find the Suspicious Behaviour (SB) needed to make a VC. The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking (GJSBS-RDNNCR) Model addresses these issues. The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks (SN). In the GJSBS-RDNNCR model, the SN is given as an input at the input layer. After that, the User’s Behaviors… More >

  • Open Access

    ARTICLE

    Deep Learning Driven Arabic Text to Speech Synthesizer for Visually Challenged People

    Mrim M. Alnfiai1,2, Nabil Almalki1,3, Fahd N. Al-Wesabi4,*, Mesfer Alduhayyem5, Anwer Mustafa Hilal6, Manar Ahmed Hamza6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2639-2652, 2023, DOI:10.32604/iasc.2023.034069 - 15 March 2023

    Abstract Text-To-Speech (TTS) is a speech processing tool that is highly helpful for visually-challenged people. The TTS tool is applied to transform the texts into human-like sounds. However, it is highly challenging to accomplish the TTS outcomes for the non-diacritized text of the Arabic language since it has multiple unique features and rules. Some special characters like gemination and diacritic signs that correspondingly indicate consonant doubling and short vowels greatly impact the precise pronunciation of the Arabic language. But, such signs are not frequently used in the texts written in the Arabic language since its speakers… More >

  • Open Access

    ARTICLE

    An Improved Time Feedforward Connections Recurrent Neural Networks

    Jin Wang1,2, Yongsong Zou1, Se-Jung Lim3,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2743-2755, 2023, DOI:10.32604/iasc.2023.033869 - 15 March 2023

    Abstract Recurrent Neural Networks (RNNs) have been widely applied to deal with temporal problems, such as flood forecasting and financial data processing. On the one hand, traditional RNNs models amplify the gradient issue due to the strict time serial dependency, making it difficult to realize a long-term memory function. On the other hand, RNNs cells are highly complex, which will significantly increase computational complexity and cause waste of computational resources during model training. In this paper, an improved Time Feedforward Connections Recurrent Neural Networks (TFC-RNNs) model was first proposed to address the gradient issue. A parallel… More >

  • Open Access

    ARTICLE

    Speech Separation Algorithm Using Gated Recurrent Network Based on Microphone Array

    Xiaoyan Zhao1,*, Lin Zhou2, Yue Xie1, Ying Tong1, Jingang Shi3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3087-3100, 2023, DOI:10.32604/iasc.2023.030180 - 15 March 2023

    Abstract Speech separation is an active research topic that plays an important role in numerous applications, such as speaker recognition, hearing prosthesis, and autonomous robots. Many algorithms have been put forward to improve separation performance. However, speech separation in reverberant noisy environment is still a challenging task. To address this, a novel speech separation algorithm using gate recurrent unit (GRU) network based on microphone array has been proposed in this paper. The main aim of the proposed algorithm is to improve the separation performance and reduce the computational cost. The proposed algorithm extracts the sub-band steered… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm

    D. Vidyabharathi1,*, V. Mohanraj2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2559-2573, 2023, DOI:10.32604/iasc.2023.032255 - 15 March 2023

    Abstract For training the present Neural Network (NN) models, the standard technique is to utilize decaying Learning Rates (LR). While the majority of these techniques commence with a large LR, they will decay multiple times over time. Decaying has been proved to enhance generalization as well as optimization. Other parameters, such as the network’s size, the number of hidden layers, dropouts to avoid overfitting, batch size, and so on, are solely based on heuristics. This work has proposed Adaptive Teaching Learning Based (ATLB) Heuristic to identify the optimal hyperparameters for diverse networks. Here we consider three More >

  • Open Access

    VIEWPOINT

    Junctional adhesion molecule-A (JAM-A) in gynecological cancers: Current state of knowledge

    KAMILA CZUBAK-PROWIZOR*, MARIA SWIATKOWSKA

    BIOCELL, Vol.47, No.4, pp. 731-737, 2023, DOI:10.32604/biocell.2023.025677 - 08 March 2023

    Abstract Junctional adhesion molecule-A (JAM-A), also known as the F11 receptor (F11R), is one of the tight junction components. JAM-A is a transmembrane glycoprotein that regulates many cellular processes, i.e., angiogenesis, leukocyte transendothelial migration, intercellular permeability, epithelial-to-mesenchymal transition, and platelet activation. Of note, it is involved in the pathogenesis of various cancer types, including gynecological cancers. Only a few studies are available about this cancer type. Observed aberrant JAM-A expression in gynecological cancers correlates with poor patient prognosis. To the best of our knowledge, conflicting JAM-A roles in various cancer types suggest that its involvement is More >

  • Open Access

    ARTICLE

    Improving Performance of Recurrent Neural Networks Using Simulated Annealing for Vertical Wind Speed Estimation

    Shafiqur Rehman1,*, Hilal H. Nuha2, Ali Al Shaikhi3, Satria Akbar2, Mohamed Mohandes1,3

    Energy Engineering, Vol.120, No.4, pp. 775-789, 2023, DOI:10.32604/ee.2023.026185 - 13 February 2023

    Abstract An accurate vertical wind speed (WS) data estimation is required to determine the potential for wind farm installation. In general, the vertical extrapolation of WS at different heights must consider different parameters from different locations, such as wind shear coefficient, roughness length, and atmospheric conditions. The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks (RNN) model to estimate WS at different heights using measurements from lower heights. The first optimization of the RNN is performed to minimize a differentiable cost function, namely, mean squared error (MSE),… More >

  • Open Access

    ARTICLE

    Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition

    Junjie Zhou, Hongkui Xu*, Zifeng Zhang, Jiangkun Lu, Wentao Guo, Zhenye Li

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2277-2297, 2023, DOI:10.32604/csse.2023.036419 - 09 February 2023

    Abstract Fraud cases have been a risk in society and people’s property security has been greatly threatened. In recent studies, many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis. These algorithms are also suitable for fraudulent phone text recognition. Compared to these tasks, the semantics of fraudulent words are more complex and more difficult to distinguish. Recurrent Neural Networks (RNN), the variants of RNN, Convolutional Neural Networks (CNN), and hybrid neural networks to extract text features are used by most text classification research. However, a single network or… More >

  • Open Access

    ARTICLE

    Continuous Mobile User Authentication Using a Hybrid CNN-Bi-LSTM Approach

    Sarah Alzahrani1, Joud Alderaan1, Dalya Alatawi1, Bandar Alotaibi1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 651-667, 2023, DOI:10.32604/cmc.2023.035173 - 06 February 2023

    Abstract Internet of Things (IoT) devices incorporate a large amount of data in several fields, including those of medicine, business, and engineering. User authentication is paramount in the IoT era to assure connected devices’ security. However, traditional authentication methods and conventional biometrics-based authentication approaches such as face recognition, fingerprints, and password are vulnerable to various attacks, including smudge attacks, heat attacks, and shoulder surfing attacks. Behavioral biometrics is introduced by the powerful sensing capabilities of IoT devices such as smart wearables and smartphones, enabling continuous authentication. Artificial Intelligence (AI)-based approaches introduce a bright future in refining… More >

  • Open Access

    ARTICLE

    Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature

    Donghun Wang, Jonghyun Lee, Minchan Kim, Insoo Lee*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2025-2040, 2023, DOI:10.32604/iasc.2023.034749 - 05 January 2023

    Abstract Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops. These batteries demonstrate several advantages, such as environmental friendliness, high energy density, and long life. However, battery overcharging and overdischarging may occur if the batteries are not monitored continuously. Overcharging causes fire and explosion casualties, and overdischarging causes a reduction in the battery capacity and life. In addition, the internal resistance of such batteries varies depending on their external temperature, electrolyte, cathode material, and other factors; the capacity of the batteries decreases with temperature. In this study, we develop a method for estimating… More >

Displaying 91-100 on page 10 of 276. Per Page