Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    Dialogue ontologique entre deux approches

    Numérique versus symbolique

    Hélène Mathian1, Lena Sanders2

    Revue Internationale de Géomatique, Vol.31, No.1, pp. 21-45, 2022, DOI:10.3166/RIG.31.21-45

    Abstract The aim of this article is to compare a statistical approach, “geometric data analysis” (GDA), and a simulation approach, the multi-agent systems (MAS), considered as representative, respectively, of a numerical and a symbolic approach of modelling. The case study concerns segregation of scholar space in the Parisian area. First the different steps leading from a thematic question to the development of an operational model to analyze this question are presented. The central and essential role of a conceptual framework at the interface of both is shown. Indeed, before operationalisation, it is necessary to verify the compatibility between the theoretical backgrounds… More >

  • Open Access

    ARTICLE

    An Improved Granulated Convolutional Neural Network Data Analysis Model for COVID-19 Prediction

    Meilin Wu1,2, Lianggui Tang1,2,*, Qingda Zhang1,2, Ke Yan1,2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 179-198, 2023, DOI:10.32604/iasc.2023.036684

    Abstract As COVID-19 poses a major threat to people’s health and economy, there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently. In non-stationary time series forecasting jobs, there is frequently a hysteresis in the anticipated values relative to the real values. The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network (MDTCNet) for COVID-19 prediction to address this problem. In particular, it is possible to record the deep features and temporal dependencies in uncertain time series, and the features may then… More >

  • Open Access

    ARTICLE

    Cognitive Granular-Based Path Planning and Tracking for Intelligent Vehicle with Multi-Segment Bezier Curve Stitching

    Xudong Wang1,2, Xueshuai Qin1, Huiyan Zhang2,*, Luis Ismael Minchala3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.036633

    Abstract Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments, such as low intelligence and poor comfort performance in the driving process. The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions. In this paper, in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier curve splicing and model predictive… More >

  • Open Access

    ARTICLE

    On a Novel Extended Lomax Distribution with Asymmetric Properties and Its Statistical Applications

    Aisha Fayomi1, Christophe Chesneau2,*, Farrukh Jamal3, Ali Algarni1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2371-2403, 2023, DOI:10.32604/cmes.2023.027000

    Abstract In this article, we highlight a new three-parameter heavy-tailed lifetime distribution that aims to extend the modeling possibilities of the Lomax distribution. It is called the extended Lomax distribution. The considered distribution naturally appears as the distribution of a transformation of a random variable following the logweighted power distribution recently introduced for percentage or proportion data analysis purposes. As a result, its cumulative distribution has the same functional basis as that of the Lomax distribution, but with a novel special logarithmic term depending on several parameters. The modulation of this logarithmic term reveals new types of asymetrical shapes, implying a… More >

  • Open Access

    ARTICLE

    Energy Theft Detection in Smart Grids with Genetic Algorithm-Based Feature Selection

    Muhammad Umair1,*, Zafar Saeed1, Faisal Saeed2, Hiba Ishtiaq1, Muhammad Zubair1, Hala Abdel Hameed3,4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5431-5446, 2023, DOI:10.32604/cmc.2023.033884

    Abstract As big data, its technologies, and application continue to advance, the Smart Grid (SG) has become one of the most successful pervasive and fixed computing platforms that efficiently uses a data-driven approach and employs efficient information and communication technology (ICT) and cloud computing. As a result of the complicated architecture of cloud computing, the distinctive working of advanced metering infrastructures (AMI), and the use of sensitive data, it has become challenging to make the SG secure. Faults of the SG are categorized into two main categories, Technical Losses (TLs) and Non-Technical Losses (NTLs). Hardware failure, communication issues, ohmic losses, and… More >

  • Open Access

    ARTICLE

    Identifying Cancer Disease Using Softmax-Feed Forward Recurrent Neural Classification

    P. Saranya*, P. Asha

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1137-1149, 2023, DOI:10.32604/iasc.2023.031470

    Abstract In today’s growing modern world environment, as human food activities are changing, it is affecting human health, thus leading to diseases like cancer. Cancer is a complex disease with many subtypes that affect human health without premature treatment and cause death. So the analysis of early diagnosis and prognosis of cancer studies can improve clinical management by analyzing various features of observation, which has become necessary to classify the type in cancer research. The research needs importance to organize the risk of the cancer patients based on data analysis to predict the result of premature treatment. This paper introduces a… More >

  • Open Access

    ARTICLE

    Sigmoidal Particle Swarm Optimization for Twitter Sentiment Analysis

    Sandeep Kumar1, Muhammad Badruddin Khan2, Mozaherul Hoque Abul Hasanat2, Abdul Khader Jilani Saudagar2,*, Abdullah AlTameem2, Mohammed AlKhathami2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 897-914, 2023, DOI:10.32604/cmc.2023.031867

    Abstract Social media, like Twitter, is a data repository, and people exchange views on global issues like the COVID-19 pandemic. Social media has been shown to influence the low acceptance of vaccines. This work aims to identify public sentiments concerning the COVID-19 vaccines and better understand the individual’s sensitivities and feelings that lead to achievement. This work proposes a method to analyze the opinion of an individual’s tweet about the COVID-19 vaccines. This paper introduces a sigmoidal particle swarm optimization (SPSO) algorithm. First, the performance of SPSO is measured on a set of 12 benchmark problems, and later it is deployed… More >

  • Open Access

    ARTICLE

    A Data-Driven Oil Production Prediction Method Based on the Gradient Boosting Decision Tree Regression

    Hongfei Ma1,*, Wenqi Zhao2, Yurong Zhao1, Yu He1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1773-1790, 2023, DOI:10.32604/cmes.2022.020498

    Abstract Accurate prediction of monthly oil and gas production is essential for oil enterprises to make reasonable production plans, avoid blind investment and realize sustainable development. Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise, and the application conditions are very demanding. With the rapid development of artificial intelligence technology, big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development. Based on the data-driven artificial intelligence algorithm Gradient Boosting Decision Tree (GBDT), this paper predicts the initial single-layer production by considering geological data, fluid PVT… More >

  • Open Access

    ARTICLE

    Wind Energy Data Analysis and Resource Mapping of Dangla, Gojjam, Ethiopia

    Belayneh Yitayew1,*, Wondwossen Bogale2

    Energy Engineering, Vol.119, No.6, pp. 2513-2532, 2022, DOI:10.32604/ee.2022.018961

    Abstract Energy is one of the most important factors in socio-economic development. The rapid increase in energy demand and air pollution has increased the number of ways to generate energy in the power sector. Currently, wind energy capacity in Ethiopia is estimated at 10,000 MW. Of these, however, only eight percent of its capacity has been used in recent years. One of the reasons for the low use of wind energy is the lack of accurate wind atlases in the country. Therefore, the purpose of this study is to develop an accurate wind atlas and review the wind resources using Wind… More >

  • Open Access

    ARTICLE

    Twitter Media Sentiment Analysis to Convert Non-Informative to Informative Using QER

    C. P. Thamil Selvi1,*, P. Muneeshwari2, K. Selvasheela3, D. Prasanna4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3545-3555, 2023, DOI:10.32604/iasc.2023.031097

    Abstract The term sentiment analysis deals with sentiment classification based on the review made by the user in a social network. The sentiment classification accuracy is evaluated using various selection methods, especially those that deal with algorithm selection. In this work, every sentiment received through user expressions is ranked in order to categorise sentiments as informative and non-informative. In order to do so, the work focus on Query Expansion Ranking (QER) algorithm that takes user text as input and process for sentiment analysis and finally produces the results as informative or non-informative. The challenge is to convert non-informative into informative using… More >

Displaying 1-10 on page 1 of 55. Per Page  

Share Link