Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Data Analytics on Unpredictable Pregnancy Data Records Using Ensemble Neuro-Fuzzy Techniques

    C. Vairavel1,*, N. S. Nithya2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2159-2175, 2023, DOI:10.32604/csse.2023.036598

    Abstract The immune system goes through a profound transformation during pregnancy, and certain unexpected maternal complications have been correlated to this transition. The ability to correctly examine, diagnoses, and predict pregnancy-hastened diseases via the available big data is a delicate problem since the range of information continuously increases and is scalable. Many approaches for disease diagnosis/classification have been established with the use of data mining concepts. However, such methods do not provide an appropriate classification/diagnosis model. Furthermore, single learning approaches are used to create the bulk of these systems. Classification issues may be made more accurate by combining predictions from many… More >

  • Open Access

    ARTICLE

    Power Scheduling with Max User Comfort in Smart Home: Performance Analysis and Tradeoffs

    Muhammad Irfan1, Ch. Anwar Ul Hassan2, Faisal Althobiani3, Nasir Ayub4,*, Raja Jalees Ul Hussen Khan5, Emad Ismat Ghandourah6, Majid A. Almas7, Saleh Mohammed Ghonaim3, V. R. Shamji3, Saifur Rahman1

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1723-1740, 2023, DOI:10.32604/csse.2023.035141

    Abstract The smart grid has enabled users to control their home energy more effectively and efficiently. A home energy management system (HEM) is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy. Here, we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm (GWA) and Harmony Search Algorithms (HSA). Moreover, a fusion initiated on HSA and GWA operators is used to optimize energy intake. Furthermore, many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge. Hybridization has proven beneficial in achieving numerous… More >

  • Open Access

    ARTICLE

    Modified Buffalo Optimization with Big Data Analytics Assisted Intrusion Detection Model

    R. Sheeba1,*, R. Sharmila2, Ahmed Alkhayyat3, Rami Q. Malik4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1415-1429, 2023, DOI:10.32604/csse.2023.034321

    Abstract Lately, the Internet of Things (IoT) application requires millions of structured and unstructured data since it has numerous problems, such as data organization, production, and capturing. To address these shortcomings, big data analytics is the most superior technology that has to be adapted. Even though big data and IoT could make human life more convenient, those benefits come at the expense of security. To manage these kinds of threats, the intrusion detection system has been extensively applied to identify malicious network traffic, particularly once the preventive technique fails at the level of endpoint IoT devices. As cyberattacks targeting IoT have… More >

  • Open Access

    ARTICLE

    Self-Tuning Parameters for Decision Tree Algorithm Based on Big Data Analytics

    Manar Mohamed Hafez1,*, Essam Eldin F. Elfakharany1, Amr A. Abohany2, Mostafa Thabet3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 943-958, 2023, DOI:10.32604/cmc.2023.034078

    Abstract Big data is usually unstructured, and many applications require the analysis in real-time. Decision tree (DT) algorithm is widely used to analyze big data. Selecting the optimal depth of DT is time-consuming process as it requires many iterations. In this paper, we have designed a modified version of a (DT). The tree aims to achieve optimal depth by self-tuning running parameters and improving the accuracy. The efficiency of the modified (DT) was verified using two datasets (airport and fire datasets). The airport dataset has 500000 instances and the fire dataset has 600000 instances. A comparison has been made between the… More >

  • Open Access

    ARTICLE

    Heterogeneous Ensemble Feature Selection Model (HEFSM) for Big Data Analytics

    M. Priyadharsini1,*, K. Karuppasamy2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2187-2205, 2023, DOI:10.32604/csse.2023.031115

    Abstract Big Data applications face different types of complexities in classifications. Cleaning and purifying data by eliminating irrelevant or redundant data for big data applications becomes a complex operation while attempting to maintain discriminative features in processed data. The existing scheme has many disadvantages including continuity in training, more samples and training time in feature selections and increased classification execution times. Recently ensemble methods have made a mark in classification tasks as combine multiple results into a single representation. When comparing to a single model, this technique offers for improved prediction. Ensemble based feature selections parallel multiple expert’s judgments on a… More >

  • Open Access

    ARTICLE

    Big Data Analytics Using Graph Signal Processing

    Farhan Amin1, Omar M. Barukab2, Gyu Sang Choi1,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 489-502, 2023, DOI:10.32604/cmc.2023.030615

    Abstract The networks are fundamental to our modern world and they appear throughout science and society. Access to a massive amount of data presents a unique opportunity to the researcher’s community. As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace. Therefore, this paper initiates a discussion on graph signal processing for large-scale data analysis. We first provide a comprehensive overview of core ideas in Graph signal processing (GSP) and their connection to conventional digital signal processing (DSP). We then summarize… More >

  • Open Access

    ARTICLE

    Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility

    Rebecca Gedda1,*, Larisa Beilina2, Ruomu Tan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1737-1759, 2023, DOI:10.32604/cmes.2022.019764

    Abstract Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner. In the context of process data analytics, change points in the time series of process variables may have an important indication about the process operation. For example, in a batch process, the change points can correspond to the operations and phases defined by the batch recipe. Hence identifying change points can assist labelling the time series data. Various unsupervised algorithms have been developed for change point detection, including the optimisation approach which minimises a cost function with certain… More > Graphic Abstract

    Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility

  • Open Access

    ARTICLE

    A Cloud Based Sentiment Analysis through Logistic Regression in AWS Platform

    Mohemmed Sha*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 857-868, 2023, DOI:10.32604/csse.2023.031321

    Abstract The use of Amazon Web Services is growing rapidly as more users are adopting the technology. It has various functionalities that can be used by large corporates and individuals as well. Sentiment analysis is used to build an intelligent system that can study the opinions of the people and help to classify those related emotions. In this research work, sentiment analysis is performed on the AWS Elastic Compute Cloud (EC2) through Twitter data. The data is managed to the EC2 by using elastic load balancing. The collected data is subjected to preprocessing approaches to clean the data, and then machine… More >

  • Open Access

    ARTICLE

    Big Data Analytics: Deep Content-Based Prediction with Sampling Perspective

    Waleed Albattah, Saleh Albahli*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 531-544, 2023, DOI:10.32604/csse.2023.021548

    Abstract The world of information technology is more than ever being flooded with huge amounts of data, nearly 2.5 quintillion bytes every day. This large stream of data is called big data, and the amount is increasing each day. This research uses a technique called sampling, which selects a representative subset of the data points, manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined, and finally, creates models. Sampling uses a small proportion of the original data for analysis and model training, so that it is relatively faster while maintaining data integrity and achieving… More >

  • Open Access

    ARTICLE

    SA-MSVM: Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter

    C. P. Thamil Selvi1,*, R. PushpaLakshmi2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2439-2456, 2023, DOI:10.32604/csse.2023.029254

    Abstract One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics. Bigdata is created from social websites like Facebook, WhatsApp, Twitter, etc. Opinions about products, persons, initiatives, political issues, research achievements, and entertainment are discussed on social websites. The unique data analytics method cannot be applied to various social websites since the data formats are different. Several approaches, techniques, and tools have been used for big data analytics, opinion mining, or sentiment analysis, but the accuracy is yet to be improved. The proposed work is motivated to do sentiment analysis on Twitter data… More >

Displaying 1-10 on page 1 of 37. Per Page  

Share Link