Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Deep Transfer Learning Based Detection and Classification of Citrus Plant Diseases

    Shah Faisal1, Kashif Javed1, Sara Ali1, Areej Alasiry2, Mehrez Marzougui2, Muhammad Attique Khan3,*, Jae-Hyuk Cha4,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 895-914, 2023, DOI:10.32604/cmc.2023.039781

    Abstract Citrus fruit crops are among the world’s most important agricultural products, but pests and diseases impact their cultivation, resulting in yield and quality losses. Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade, allowing for early disease detection and improving agricultural production. This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning (DL) model, which improved accuracy while decreasing computational complexity. The most recent transfer learning-based models were applied to the Citrus Plant Dataset to improve classification accuracy. Using… More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Stage Classification Using a Deep Transfer Learning and Sparse Auto Encoder Method

    Deepthi K. Oommen*, J. Arunnehru

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 793-811, 2023, DOI:10.32604/cmc.2023.038640

    Abstract Alzheimer’s Disease (AD) is a progressive neurological disease. Early diagnosis of this illness using conventional methods is very challenging. Deep Learning (DL) is one of the finest solutions for improving diagnostic procedures’ performance and forecast accuracy. The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups. In light of research investigations, it is vital to consider age as one of the key criteria when choosing the subjects. The younger subjects are more susceptible to the perishable side than the older onset. The proposed investigation concentrated on the younger onset. The research used… More >

  • Open Access

    ARTICLE

    Intelligent Beetle Antenna Search with Deep Transfer Learning Enabled Medical Image Classification Model

    Mohamed Ibrahim Waly*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3159-3174, 2023, DOI:10.32604/csse.2023.035900

    Abstract Recently, computer assisted diagnosis (CAD) model creation has become more dependent on medical picture categorization. It is often used to identify several conditions, including brain disorders, diabetic retinopathy, and skin cancer. Most traditional CAD methods relied on textures, colours, and forms. Because many models are issue-oriented, they need a more substantial capacity to generalize and cannot capture high-level problem domain notions. Recent deep learning (DL) models have been published, providing a practical way to develop models specifically for classifying input medical pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL) method for classifying medical images facilitated by deep transfer… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning-Enabled Activity Identification and Fall Detection for Disabled People

    Majdy M. Eltahir1, Adil Yousif2, Fadwa Alrowais3, Mohamed K. Nour4, Radwa Marzouk5, Hatim Dafaalla6, Asma Abbas Hassan Elnour6, Amira Sayed A. Aziz7, Manar Ahmed Hamza8,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3239-3255, 2023, DOI:10.32604/cmc.2023.034037

    Abstract The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection. This is especially applicable in the case of elderly or disabled people who live self-reliantly in their homes. These sensors produce a huge volume of physical activity data that necessitates real-time recognition, especially during emergencies. Falling is one of the most important problems confronted by older people and people with movement disabilities. Numerous previous techniques were introduced and a few used webcam to monitor the activity of elderly or disabled people. But, the costs incurred upon installation and operation are high,… More >

  • Open Access

    ARTICLE

    Arithmetic Optimization with Ensemble Deep Transfer Learning Based Melanoma Classification

    K. Kalyani1, Sara A Althubiti2, Mohammed Altaf Ahmed3, E. Laxmi Lydia4, Seifedine Kadry5, Neunggyu Han6, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 149-164, 2023, DOI:10.32604/cmc.2023.033005

    Abstract Melanoma is a skin disease with high mortality rate while early diagnoses of the disease can increase the survival chances of patients. It is challenging to automatically diagnose melanoma from dermoscopic skin samples. Computer-Aided Diagnostic (CAD) tool saves time and effort in diagnosing melanoma compared to existing medical approaches. In this background, there is a need exists to design an automated classification model for melanoma that can utilize deep and rich feature datasets of an image for disease classification. The current study develops an Intelligent Arithmetic Optimization with Ensemble Deep Transfer Learning Based Melanoma Classification (IAOEDTT-MC) model. The proposed IAOEDTT-MC… More >

  • Open Access

    ARTICLE

    Gastrointestinal Diseases Classification Using Deep Transfer Learning and Features Optimization

    Mousa Alhajlah1, Muhammad Nouman Noor2, Muhammad Nazir2, Awais Mahmood1,*, Imran Ashraf3, Tehmina Karamat4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2227-2245, 2023, DOI:10.32604/cmc.2023.031890

    Abstract Gastrointestinal diseases like ulcers, polyps’, and bleeding are increasing rapidly in the world over the last decade. On average 0.7 million cases are reported worldwide every year. The main cause of gastrointestinal diseases is a Helicobacter Pylori (H. Pylori) bacterium that presents in more than 50% of people around the globe. Many researchers have proposed different methods for gastrointestinal disease using computer vision techniques. Few of them focused on the detection process and the rest of them performed classification. The major challenges that they faced are the similarity of infected and healthy regions that misleads the correct classification accuracy. In… More >

  • Open Access

    ARTICLE

    MDEV Model: A Novel Ensemble-Based Transfer Learning Approach for Pneumonia Classification Using CXR Images

    Mehwish Shaikh1, Isma Farah Siddiqui1, Qasim Arain1, Jahwan Koo2,*, Mukhtiar Ali Unar3, Nawab Muhammad Faseeh Qureshi4,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 287-302, 2023, DOI:10.32604/csse.2023.035311

    Abstract Pneumonia is a dangerous respiratory disease due to which breathing becomes incredibly difficult and painful; thus, catching it early is crucial. Medical physicians’ time is limited in outdoor situations due to many patients; therefore, automated systems can be a rescue. The input images from the X-ray equipment are also highly unpredictable due to variances in radiologists’ experience. Therefore, radiologists require an automated system that can swiftly and accurately detect pneumonic lungs from chest x-rays. In medical classifications, deep convolution neural networks are commonly used. This research aims to use deep pre-trained transfer learning models to accurately categorize CXR images into… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Driven Automated Fall Detection for Quality of Living of Disabled Persons

    Nabil Almalki1,2, Mrim M. Alnfiai1,3, Fahd N. Al-Wesabi4, Mesfer Alduhayyem5, Anwer Mustafa Hilal6,*, Manar Ahmed Hamza6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6719-6736, 2023, DOI:10.32604/cmc.2023.034417

    Abstract Mobile communication and the Internet of Things (IoT) technologies have recently been established to collect data from human beings and the environment. The data collected can be leveraged to provide intelligent services through different applications. It is an extreme challenge to monitor disabled people from remote locations. It is because day-to-day events like falls heavily result in accidents. For a person with disabilities, a fall event is an important cause of mortality and post-traumatic complications. Therefore, detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival… More >

  • Open Access

    ARTICLE

    Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition

    Mohammed Maray1, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Saeed Masoud Alshahrani4,*, Najm Alotaibi5, Sana Alazwari6, Mahmoud Othman7, Manar Ahmed Hamza8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5467-5482, 2023, DOI:10.32604/cmc.2023.033534

    Abstract The recognition of the Arabic characters is a crucial task in computer vision and Natural Language Processing fields. Some major complications in recognizing handwritten texts include distortion and pattern variabilities. So, the feature extraction process is a significant task in NLP models. If the features are automatically selected, it might result in the unavailability of adequate data for accurately forecasting the character classes. But, many features usually create difficulties due to high dimensionality issues. Against this background, the current study develops a Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition (SFODTL-AHCR) model. The projected SFODTL-AHCR model primarily focuses… More >

  • Open Access

    ARTICLE

    Lightning Search Algorithm with Deep Transfer Learning-Based Vehicle Classification

    Mrim M. Alnfiai*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6505-6521, 2023, DOI:10.32604/cmc.2023.033422

    Abstract There is a drastic increase experienced in the production of vehicles in recent years across the globe. In this scenario, vehicle classification system plays a vital part in designing Intelligent Transportation Systems (ITS) for automatic highway toll collection, autonomous driving, and traffic management. Recently, computer vision and pattern recognition models are useful in designing effective vehicle classification systems. But these models are trained using a small number of hand-engineered features derived from small datasets. So, such models cannot be applied for real-time road traffic conditions. Recent developments in Deep Learning (DL)-enabled vehicle classification models are highly helpful in resolving the… More >

Displaying 1-10 on page 1 of 25. Per Page  

Share Link