Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,722)
  • Open Access

    ARTICLE

    SSA-LSTM-Multi-Head Attention Modelling Approach for Prediction of Coal Dust Maximum Explosion Pressure Based on the Synergistic Effect of Particle Size and Concentration

    Yongli Liu1,2, Weihao Li1,2,*, Haitao Wang1,2,3, Taoren Du4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2261-2286, 2025, DOI:10.32604/cmes.2025.064179 - 30 May 2025

    Abstract Coal dust explosions are severe safety accidents in coal mine production, posing significant threats to life and property. Predicting the maximum explosion pressure () of coal dust using deep learning models can effectively assess potential risks and provide a scientific basis for preventing coal dust explosions. In this study, a 20-L explosion sphere apparatus was used to test the maximum explosion pressure of coal dust under seven different particle sizes and ten mass concentrations (), resulting in a dataset of 70 experimental groups. Through Spearman correlation analysis and random forest feature selection methods, particle size… More >

  • Open Access

    ARTICLE

    A Novel Data-Annotated Label Collection and Deep-Learning Based Medical Image Segmentation in Reversible Data Hiding Domain

    Lord Amoah1,2, Jinwei Wang1,2,3,*, Bernard-Marie Onzo1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1635-1660, 2025, DOI:10.32604/cmes.2025.063992 - 30 May 2025

    Abstract Medical image segmentation, i.e., labeling structures of interest in medical images, is crucial for disease diagnosis and treatment in radiology. In reversible data hiding in medical images (RDHMI), segmentation consists of only two regions: the focal and nonfocal regions. The focal region mainly contains information for diagnosis, while the nonfocal region serves as the monochrome background. The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images, and manual segmentation is time-consuming, poorly reproducible, and operator-dependent. Implementing state-of-the-art deep learning (DL) models will facilitate key benefits, but the lack of domain-specific labels… More >

  • Open Access

    ARTICLE

    Deep Learning and Heuristic Optimization for Secure and Efficient Energy Management in Smart Communities

    Murad Khan1,*, Mohammed Faisal1, Fahad R. Albogamy2, Muhammad Diyan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2027-2052, 2025, DOI:10.32604/cmes.2025.063764 - 30 May 2025

    Abstract The rapid advancements in distributed generation technologies, the widespread adoption of distributed energy resources, and the integration of 5G technology have spurred sharing economy businesses within the electricity sector. Revolutionary technologies such as blockchain, 5G connectivity, and Internet of Things (IoT) devices have facilitated peer-to-peer distribution and real-time response to fluctuations in supply and demand. Nevertheless, sharing electricity within a smart community presents numerous challenges, including intricate design considerations, equitable allocation, and accurate forecasting due to the lack of well-organized temporal parameters. To address these challenges, this proposed system is focused on sharing extra electricity… More >

  • Open Access

    ARTICLE

    A Novel Approach Deep Learning Framework for Automatic Detection of Diseases in Retinal Fundus Images

    Kachi Anvesh1,2, Bharati M. Reshmi2,3, Shanmugasundaram Hariharan4, H. Venkateshwara Reddy5, Murugaperumal Krishnamoorthy6, Vinay Kukreja7, Shih-Yu Chen8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1485-1517, 2025, DOI:10.32604/cmes.2025.063239 - 30 May 2025

    Abstract Automated classification of retinal fundus images is essential for identifying eye diseases, though there is earlier research on applying deep learning models designed especially for detecting tessellation in retinal fundus images. This study classifies 4 classes of retinal fundus images with 3 diseased fundus images and 1 normal fundus image, by creating a refined VGG16 model to categorize fundus pictures into tessellated, normal, myopia, and choroidal neovascularization groups. The approach utilizes a VGG16 architecture that has been altered with unique fully connected layers and regularization using dropouts, along with data augmentation techniques (rotation, flip, and… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Lip-Reading for Vocal Impaired Patient Rehabilitation

    Chiara Innocente1,*, Matteo Boemio2, Gianmarco Lorenzetti2, Ilaria Pulito2, Diego Romagnoli2, Valeria Saponaro2, Giorgia Marullo1, Luca Ulrich1, Enrico Vezzetti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1355-1379, 2025, DOI:10.32604/cmes.2025.063186 - 30 May 2025

    Abstract Lip-reading technology, based on visual speech decoding and automatic speech recognition, offers a promising solution to overcoming communication barriers, particularly for individuals with temporary or permanent speech impairments. However, most Visual Speech Recognition (VSR) research has primarily focused on the English language and general-purpose applications, limiting its practical applicability in medical and rehabilitative settings. This study introduces the first Deep Learning (DL) based lip-reading system for the Italian language designed to assist individuals with vocal cord pathologies in daily interactions, facilitating communication for patients recovering from vocal cord surgeries, whether temporarily or permanently impaired. To… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services

    Sangmin Kim1, Byeongcheon Lee1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2079-2108, 2025, DOI:10.32604/cmes.2025.061653 - 30 May 2025

    Abstract The increased accessibility of social networking services (SNSs) has facilitated communication and information sharing among users. However, it has also heightened concerns about digital safety, particularly for children and adolescents who are increasingly exposed to online grooming crimes. Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims. However, research on grooming detection in South Korea remains limited, as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations, leading to inaccurate classifications. To address these issues, this study proposes a novel… More >

  • Open Access

    ARTICLE

    Enhanced Classification of Brain Tumor Types Using Multi-Head Self-Attention and ResNeXt CNN

    Muhammad Naeem*, Abdul Majid

    Journal on Artificial Intelligence, Vol.7, pp. 115-141, 2025, DOI:10.32604/jai.2025.062446 - 30 May 2025

    Abstract Brain tumor identification is a challenging task in neuro-oncology. The brain’s complex anatomy makes it a crucial part of the central nervous system. Accurate tumor classification is crucial for clinical diagnosis and treatment planning. This research presents a significant advancement in the multi-classification of brain tumors. This paper proposed a novel architecture that integrates Enhanced ResNeXt 101_32×8d, a Convolutional Neural Network (CNN) with a multi-head self-attention (MHSA) mechanism. This combination harnesses the strengths of the feature extraction, feature representation by CNN, and long-range dependencies by MHSA. Magnetic Resonance Imaging (MRI) datasets were employed to check… More >

  • Open Access

    ARTICLE

    A Bayesian Optimized Stacked Long Short-Term Memory Framework for Real-Time Predictive Condition Monitoring of Heavy-Duty Industrial Motors

    Mudasir Dilawar*, Muhammad Shahbaz

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5091-5114, 2025, DOI:10.32604/cmc.2025.064090 - 19 May 2025

    Abstract In the era of Industry 4.0, condition monitoring has emerged as an effective solution for process industries to optimize their operational efficiency. Condition monitoring helps minimize unplanned downtime, extending equipment lifespan, reducing maintenance costs, and improving production quality and safety. This research focuses on utilizing Bayesian search-based machine learning and deep learning approaches for the condition monitoring of industrial equipment. The study aims to enhance predictive maintenance for industrial equipment by forecasting vibration values based on domain-specific feature engineering. Early prediction of vibration enables proactive interventions to minimize downtime and extend the lifespan of critical… More >

  • Open Access

    ARTICLE

    Design a Computer Vision Approach to Localize, Detect and Count Rice Seedlings Captured by a UAV-Mounted Camera

    Trong Hieu Luu1, Phan Nguyen Ky Phuc2, Quang Hieu Ngo1,*, Thanh Tam Nguyen3, Huu Cuong Nguyen1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5643-5656, 2025, DOI:10.32604/cmc.2025.064007 - 19 May 2025

    Abstract This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields. Utilizing a drone equipped with a high-resolution camera, images are captured 14 days post-sowing at a consistent altitude of six meters, employing autonomous flight for uniform data acquisition. The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage. The methodology follows a two-step process: first, the GoogleNet deep learning network identifies the location and center points of rice plants. Then, the U-Net deep learning network performs classification and… More >

  • Open Access

    ARTICLE

    A Multi-Layers Information Fused Deep Architecture for Skin Cancer Classification in Smart Healthcare

    Veena Dillshad1, Muhammad Attique Khan2,*, Muhammad Nazir1, Jawad Ahmad2, Dina Abdulaziz AlHammadi3, Taha Houda2, Hee-Chan Cho4, Byoungchol Chang5,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5299-5321, 2025, DOI:10.32604/cmc.2025.063851 - 19 May 2025

    Abstract Globally, skin cancer is a prevalent form of malignancy, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but several challenges, such as long waiting times and subjective interpretations, make this task difficult. The recent advancement of deep learning in healthcare has shown much success in diagnosing and classifying skin cancer and has assisted dermatologists in clinics. Deep learning improves the speed and precision of skin cancer diagnosis, leading to earlier prediction and treatment. In this work, we proposed a novel deep architecture for skin cancer… More >

Displaying 21-30 on page 3 of 1722. Per Page