Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,514)
  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data Cleaning and PSO-LSTM Model

    Yujin Liu1, Zhenkai Zhang1, Li Ma1, Yan Jia1,2,*, Weihua Yin3, Zhifeng Liu3

    Energy Engineering, Vol.121, No.10, pp. 3019-3035, 2024, DOI:10.32604/ee.2024.052594 - 11 September 2024

    Abstract Accurate short-term photovoltaic (PV) power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans. In order to improve the accuracy of PV power prediction further, this paper proposes a data cleaning method combining density clustering and support vector machine. It constructs a short-term PV power prediction model based on particle swarm optimization (PSO) optimized Long Short-Term Memory (LSTM) network. Firstly, the input features are determined using Pearson’s correlation coefficient. The feature information is clustered using density-based spatial clustering of applications with noise More >

  • Open Access

    ARTICLE

    A Pooling Method Developed for Use in Convolutional Neural Networks

    İsmail Akgül*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 751-770, 2024, DOI:10.32604/cmes.2024.052549 - 20 August 2024

    Abstract In convolutional neural networks, pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models. These methods reduce the computational amount of convolutional neural networks, making the neural network more efficient. Maximum pooling, average pooling, and minimum pooling methods are generally used in convolutional neural networks. However, these pooling methods are not suitable for all datasets used in neural network applications. In this study, a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural… More >

  • Open Access

    ARTICLE

    AI-Based Helmet Violation Detection for Traffic Management System

    Yahia Said1,*, Yahya Alassaf2, Refka Ghodhbani3, Yazan Ahmad Alsariera4, Taoufik Saidani3, Olfa Ben Rhaiem4, Mohamad Khaled Makhdoum1, Manel Hleili5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 733-749, 2024, DOI:10.32604/cmes.2024.052369 - 20 August 2024

    Abstract Enhancing road safety globally is imperative, especially given the significant portion of traffic-related fatalities attributed to motorcycle accidents resulting from non-compliance with helmet regulations. Acknowledging the critical role of helmets in rider protection, this paper presents an innovative approach to helmet violation detection using deep learning methodologies. The primary innovation involves the adaptation of the PerspectiveNet architecture, transitioning from the original Res2Net to the more efficient EfficientNet v2 backbone, aimed at bolstering detection capabilities. Through rigorous optimization techniques and extensive experimentation utilizing the India driving dataset (IDD) for training and validation, the system demonstrates exceptional More >

  • Open Access

    ARTICLE

    Anomaly-Based Intrusion Detection Model Using Deep Learning for IoT Networks

    Muaadh A. Alsoufi1,*, Maheyzah Md Siraj1, Fuad A. Ghaleb2, Muna Al-Razgan3, Mahfoudh Saeed Al-Asaly3, Taha Alfakih3, Faisal Saeed2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 823-845, 2024, DOI:10.32604/cmes.2024.052112 - 20 August 2024

    Abstract The rapid growth of Internet of Things (IoT) devices has brought numerous benefits to the interconnected world. However, the ubiquitous nature of IoT networks exposes them to various security threats, including anomaly intrusion attacks. In addition, IoT devices generate a high volume of unstructured data. Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks, such as resource constraints and heterogeneous data sources. Given the unpredictable nature of network technologies and diverse intrusion methods, conventional machine-learning approaches seem to lack efficiency. Across numerous research domains, deep learning techniques have demonstrated… More >

  • Open Access

    ARTICLE

    Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images

    Sonali Das1, Saroja Kumar Rout2, Sujit Kumar Panda1, Pradyumna Kumar Mohapatra3, Abdulaziz S. Almazyad4, Muhammed Basheer Jasser5,6,*, Guojiang Xiong7, Ali Wagdy Mohamed8,9

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 893-916, 2024, DOI:10.32604/cmes.2024.051856 - 20 August 2024

    Abstract In blood or bone marrow, leukemia is a form of cancer. A person with leukemia has an expansion of white blood cells (WBCs). It primarily affects children and rarely affects adults. Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body. Identifying leukemia in the initial stage is vital to providing timely patient care. Medical image-analysis-related approaches grant safer, quicker, and less costly solutions while ignoring the difficulties of these invasive processes. It can be simple to generalize Computer vision (CV)-based and image-processing techniques and eradicate human… More >

  • Open Access

    ARTICLE

    CAEFusion: A New Convolutional Autoencoder-Based Infrared and Visible Light Image Fusion Algorithm

    Chun-Ming Wu1, Mei-Ling Ren2,*, Jin Lei2, Zi-Mu Jiang3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2857-2872, 2024, DOI:10.32604/cmc.2024.053708 - 15 August 2024

    Abstract To address the issues of incomplete information, blurred details, loss of details, and insufficient contrast in infrared and visible image fusion, an image fusion algorithm based on a convolutional autoencoder is proposed. The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map. A multi-scale convolution attention module is suggested to enhance the communication of feature information. At the same time, the feature transformation module is introduced to learn more robust feature representations, aiming to preserve the integrity of… More >

  • Open Access

    ARTICLE

    Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data

    Uddagiri Sirisha1,, Parvathaneni Naga Srinivasu2,3,*, Panguluri Padmavathi4, Seongki Kim5,, Aruna Pavate6, Jana Shafi7, Muhammad Fazal Ijaz8,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2301-2330, 2024, DOI:10.32604/cmc.2024.053132 - 15 August 2024

    Abstract Fetal health care is vital in ensuring the health of pregnant women and the fetus. Regular check-ups need to be taken by the mother to determine the status of the fetus’ growth and identify any potential problems. To know the status of the fetus, doctors monitor blood reports, Ultrasounds, cardiotocography (CTG) data, etc. Still, in this research, we have considered CTG data, which provides information on heart rate and uterine contractions during pregnancy. Several researchers have proposed various methods for classifying the status of fetus growth. Manual processing of CTG data is time-consuming and unreliable.… More >

  • Open Access

    ARTICLE

    An Optimized Approach to Deep Learning for Botnet Detection and Classification for Cybersecurity in Internet of Things Environment

    Abdulrahman Alzahrani*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2331-2349, 2024, DOI:10.32604/cmc.2024.052804 - 15 August 2024

    Abstract The recent development of the Internet of Things (IoTs) resulted in the growth of IoT-based DDoS attacks. The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices. Anomaly detection models evaluate transmission patterns, network traffic, and device behaviour to detect deviations from usual activities. Machine learning (ML) techniques detect patterns signalling botnet activity, namely sudden traffic increase, unusual command and control patterns, or irregular device behaviour. In addition, intrusion detection systems (IDSs) and signature-based techniques are applied to recognize known malware signatures related to botnets.… More >

  • Open Access

    ARTICLE

    ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images

    Jing Wang1,2,*, Chen Zhang1, Tianwen Lin1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1907-1925, 2024, DOI:10.32604/cmc.2024.052597 - 15 August 2024

    Abstract When existing deep learning models are used for road extraction tasks from high-resolution images, they are easily affected by noise factors such as tree and building occlusion and complex backgrounds, resulting in incomplete road extraction and low accuracy. We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt. Then, ConvNeXt is used as the backbone network, which cooperates with the perceptual analysis network UPerNet, retains the detection head of the semantic segmentation, and builds a new model ConvNeXt-UPerNet to suppress noise interference. Training on the open-source DeepGlobe and CHN6-CUG… More >

  • Open Access

    ARTICLE

    Adaptive Graph Convolutional Adjacency Matrix Network for Video Summarization

    Jing Zhang*, Guangli Wu, Shanshan Song

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1947-1965, 2024, DOI:10.32604/cmc.2024.051781 - 15 August 2024

    Abstract Video summarization aims to select key frames or key shots to create summaries for fast retrieval, compression, and efficient browsing of videos. Graph neural networks efficiently capture information about graph nodes and their neighbors, but ignore the dynamic dependencies between nodes. To address this challenge, we propose an innovative Adaptive Graph Convolutional Adjacency Matrix Network (TAMGCN), leveraging the attention mechanism to dynamically adjust dependencies between graph nodes. Specifically, we first segment shots and extract features of each frame, then compute the representative features of each shot. Subsequently, we utilize the attention mechanism to dynamically adjust More >

Displaying 21-30 on page 3 of 1514. Per Page