Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Classification of Citrus Plant Diseases Using Deep Transfer Learning

    Muhammad Zia Ur Rehman1, Fawad Ahmed1, Muhammad Attique Khan2, Usman Tariq3, Sajjad Shaukat Jamal4, Jawad Ahmad5,*, Iqtadar Hussain6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1401-1417, 2022, DOI:10.32604/cmc.2022.019046 - 07 September 2021

    Abstract In recent years, the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits. This in turn has helped in improving the quality and production of vegetables and fruits. Citrus fruits are well known for their taste and nutritional values. They are one of the natural and well known sources of vitamin C and planted worldwide. There are several diseases which severely affect the quality and yield of citrus fruits. In this paper, a new deep learning based technique is proposed for citrus disease classification.… More >

  • Open Access

    ARTICLE

    DTLM-DBP: Deep Transfer Learning Models for DNA Binding Proteins Identification

    Sara Saber1, Uswah Khairuddin2,*, Rubiyah Yusof2, Ahmed Madani1

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3563-3576, 2021, DOI:10.32604/cmc.2021.017769 - 06 May 2021

    Abstract The identification of DNA binding proteins (DNABPs) is considered a major challenge in genome annotation because they are linked to several important applied and research applications of cellular functions e.g., in the study of the biological, biophysical, and biochemical effects of antibiotics, drugs, and steroids on DNA. This paper presents an efficient approach for DNABPs identification based on deep transfer learning, named “DTLM-DBP.” Two transfer learning methods are used in the identification process. The first is based on the pre-trained deep learning model as a feature’s extractor and classifier. Two different pre-trained Convolutional Neural Networks… More >

Displaying 31-40 on page 4 of 32. Per Page