Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (217)
  • Open Access

    ARTICLE

    High-Temperature Deformation and Low-Temperature Fracture Behavior of Steel Slag Rubber Asphalt Mixture Surface Layer

    Zhiqiang Shu1, Jianmin Wu1,*, Shi Chen2, Shan Yi2, Shaoqing Li1

    Journal of Renewable Materials, Vol.10, No.2, pp. 453-467, 2022, DOI:10.32604/jrm.2022.016828

    Abstract Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value. It can play a vital role in the construction industry especially in the field of transportation infrastructure construction. However, there are few evaluation systems established on the high-temperature deformation and low-temperature fracture behavior of steel slag rubber asphalt mixture (SSRAM). This study explores the performance of SSRAM by uniaxial penetration test, Semi-Circular Bending (SCB) test and evaluates test data through regression analysis. The uniaxial penetration test results shows that the failure deformation of SSRAM increases with… More >

  • Open Access

    ARTICLE

    Study of Mutual Improvement of Completed Weathered Phyllite and Red Clay Based on Neutralization Effects of Swelling and Shrinkage Deformation

    Xiushao Zhao1, Qijing Yang1,2,*, Jianglong Rao1, Daxin Geng1, Zhouyong Tan1

    Journal of Renewable Materials, Vol.10, No.1, pp. 203-218, 2022, DOI:10.32604/jrm.2021.015854

    Abstract Completely weathered phyllite (CWP) soil is a kind of special soil with high swell potential, while red clay is a special soil with high shrinkage. This means that these two kinds of special soils are usually not suitable for direct use as subgrade fill. To reduce the swell index of the CWP soil and the shrinkage of red clay at the same time, it was proposed to blend the CWP soil with red clay to improve their basic characteristics. A series of swell index tests and dry-wet cycle tests of the blended soils have been… More > Graphic Abstract

    Study of Mutual Improvement of Completed Weathered Phyllite and Red Clay Based on Neutralization Effects of Swelling and Shrinkage Deformation

  • Open Access

    ARTICLE

    A GPU-Based Parallel Algorithm for 2D Large Deformation Contact Problems Using the Finite Particle Method

    Wei Wang1,2, Yanfeng Zheng1,3, Jingzhe Tang1, Chao Yang1, Yaozhi Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 595-626, 2021, DOI:10.32604/cmes.2021.017321

    Abstract Large deformation contact problems generally involve highly nonlinear behaviors, which are very time-consuming and may lead to convergence issues. The finite particle method (FPM) effectively separates pure deformation from total motion in large deformation problems. In addition, the decoupled procedures of the FPM make it suitable for parallel computing, which may provide an approach to solve time-consuming issues. In this study, a graphics processing unit (GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems. The fundamentals of the FPM for planar solids are first briefly introduced, including the equations of motion of particles… More >

  • Open Access

    ARTICLE

    A 3-Node Co-Rotational Triangular Finite Element for Non-Smooth, Folded and Multi-Shell Laminated Composite Structures

    Zhongxue Li1,*, Jiawei Ji1, Loc Vu-Quoc2, Bassam A. Izzuddin3, Xin Zhuo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 485-518, 2021, DOI:10.32604/cmes.2021.016050

    Abstract Based on the first-order shear deformation theory, a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth, folded and multi-shell laminated composite structures. The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system. In the global coordinate system, two smaller components of one vector, together with the smallest or second smallest component of another vector, of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational… More >

  • Open Access

    ARTICLE

    Methodology for Road Defect Detection and Administration Based on Mobile Mapping Data

    Marina Davidović1,*, Tatjana Kuzmić1, Dejan Vasić1, Valentin Wich2, Ansgar Brunn2, Vladimir Bulatović1

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 207-226, 2021, DOI:10.32604/cmes.2021.016071

    Abstract A detailed inspection of roads requires highly detailed spatial data with sufficient precision to deliver an accurate geometry and to describe road defects visually. This paper presents a novel method for the detection of road defects. The input data for road defect detection included point clouds and orthomosaics gathered by mobile mapping technology. The defects were categorized in three major groups with the following geometric primitives: points, lines and polygons. The method suggests the detection of point objects from matched point clouds, panoramic images and ortho photos. Defects were mapped as point, line or polygon… More >

  • Open Access

    ARTICLE

    Analysis of One-Dimensional Compression under a Wide Range of Stress with Densely Arrayed BPM

    Tao Zhang1,*, Ke Xu1,2, Wenxiong Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 1101-1117, 2021, DOI:10.32604/cmes.2021.015406

    Abstract In this paper, the densely arrayed bonded particle model is proposed for simulation of granular materials with discrete element method (DEM) considering particle crushing. This model can solve the problem of pore calculation after the grains are crushed, and reduce the producing time of specimen. In this work, several one-dimensional compressing simulations are carried out to investigate the effect of particle crushing on mechanical properties of granular materials under a wide range of stress. The results show that the crushing process of granular materials can be divided into four different stages according to er-logσy curves. At More >

  • Open Access

    ARTICLE

    Minimizing Warpage for Macro-Size Fused Deposition Modeling Parts

    Thanh Thuong Huynh1, Tien V. T. Nguyen2,3, Quoc Manh Nguyen4, Trieu Khoa Nguyen2,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2913-2923, 2021, DOI:10.32604/cmc.2021.016064

    Abstract In this study, we investigated warpage and corner lifting minimization for three-dimensional printed parts generated by macro-size fused deposition modeling (FDM). First, the reasons for warpage were theoretically elucidated. This approach revealed that the thermal deformation and differential volumetric shrinkage of the extruded molten plastic resulted in warpage of FDM parts. In addition, low adhesion between the deposited model and the heated or non-heated printing bed may intensify warpage further. As a next step, initial small-size and medium-size models were used to identify parameters to manage and minimize warpage in a way that would reduce… More >

  • Open Access

    ARTICLE

    Fatigue Crack Propagation Analysis of Orthotropic Steel Bridge with Crack Tip Elastoplastic Consideration

    Ying Wang1,*, Zheng Yan1, Zhen Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 549-574, 2021, DOI:10.32604/cmes.2021.014727

    Abstract Due to the complex structure and dense weld of the orthotropic steel bridge deck (OSBD), fatigue cracks are prone to occur in the typical welding details. Welding residual stress (WRS) will cause a plastic zone at the crack tip. In this paper, an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced, and the extended finite element method (XFEM) was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation. By judging the stress state of the residual stress field at the… More >

  • Open Access

    ARTICLE

    Buoyancy driven Flow of a Second-Grade Nanofluid flow Taking into Account the Arrhenius Activation Energy and Elastic Deformation: Models and Numerical Results

    R. Kalaivanan1, N. Vishnu Ganesh2, Qasem M. Al-Mdallal3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 319-332, 2021, DOI:10.32604/fdmp.2021.012789

    Abstract The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass, species concentration, momentum and energy. The elastic properties of the considered fluid are taken into account. The two-dimensional slip flow of such non-Newtonian fluid over a porous flat material which is stretched vertically upwards is considered. The role played by the activation energy is accounted for through an exponent form modified Arrhenius function added to the Buongiorno model for the nanofluid concentration. The effects More >

  • Open Access

    ABSTRACT

    A Method for Measuring Displacement and Strain of Rubber Sheets with Large Deformation Using Digital Image Correlation

    Kengo Fujii1, Satoru Yoneyama1, Ayaka Suzuki2, Hiroshi Yamada2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 21-21, 2021, DOI:10.32604/icces.2021.08538

    Abstract This study establishes a method to measure the displacement and strain of rubber with large and fast deformations using digital image correlation. In order to elucidate the mechanism of growth of a crack and to investigate the complex behavior of a crack tip, which is important for that purpose, displacement and strain near the crack where large strains are locally generated by stress concentration are measured. A displacement restraint rubber sheet of a strip fixed at upper and lower ends with an initial crack is used as a test piece. A constant rate displacement load… More >

Displaying 41-50 on page 5 of 217. Per Page