Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    REVIEW

    Applications of CRISPR-Cas System in Tumor Biology

    Mengdan Ma1,2, Yuchen Liu1,*, Weiren Huang1,*

    Oncologie, Vol.23, No.4, pp. 463-492, 2021, DOI:10.32604/oncologie.2022.019415

    Abstract The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system, which is an RNA-guided nuclease system, plays an important role in the adaptive immune response of bacteria, and it is a rapidly developing gene editing technology. It has been widely used in a variety of cells, microorganisms, plants, and animals. This technique has helped to overcome the limitations of previous gene editing methods, and it has promoted the development of synthetic biology, genetics, and proteomics. The ability of the CRISPR-Cas system to modify the genetic components of a system has led to various practical applications, such as base editing, transcription regulation,… More >

  • Open Access

    REVIEW

    The Current Status of Chlorin e6-Based Nanoscale Delivery Systems for Cancer Therapy

    Zhengyi Li1,2,3, Lihua Qiu1,2,3,*

    Oncologie, Vol.23, No.4, pp. 515-531, 2021, DOI:10.32604/oncologie.2021.019856

    Abstract Improving the effectiveness of cancer treatment has become a central concern for the public. In recent years, in order to maximize the efficiency of cancer treatment, photodynamic therapy (PDT) and sonodynamic therapy (SDT) have received widespread attention. Chlorin e6 (Ce6) is a fluorescent dye with strong optical properties and excellent photoconversion efficiency under near-infrared light irradiation, which has been widely used in PDT in recent decades due to its superior antitumor ability. Of note, Ce6 can be used as a sonosensitizer for SDT, which generates large amounts of reactive oxygen species (ROS) for tumor treatment after ultrasound activation. These strategies… More >

  • Open Access

    VIEWPOINT

    Mesenchymal stem cells-derived extracellular vesicles as ‘natural’ drug delivery system for tissue regeneration

    KENJI TSUJI*, SHINJI KITAMURA, JUN WADA

    BIOCELL, Vol.46, No.4, pp. 899-902, 2022, DOI:10.32604/biocell.2022.018594

    Abstract Mesenchymal stem cells (MSCs) have abilities to mediate tissue protection through mechanisms of anti-apoptosis, anti-oxidative stress and anti-fibrosis as well as tissue regeneration through mechanisms of cell proliferation, differentiation and angiogenesis. These effects by MSCs are mediated by a variety of factors, including growth factors, cytokines and extracellular vesicles (EVs). Among these factors, EVs, containing proteins, mRNA and microRNAs (miRNA), may carry their contents into distant tissues with high stability. Therefore, the treatment with MSC-derived EVs may be promising as ‘natural’ drug delivery systems (DDS). Especially, the treatment of MSC-derived EVs with the manipulation of specific miRNAs expression has been… More >

  • Open Access

    ARTICLE

    A Novel Automatic Meal Delivery System

    Jhe-Wei Lin1, Cheng-Yan Siao1, Ting-Hsuan Chien2,*, Rong-Guey Chang1

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 685-695, 2021, DOI:10.32604/iasc.2021.018254

    Abstract Since the rapid growth of the Fourth Industrial Revolution (or Industry 4.0), robots have been widely used in many applications. In the catering industry, robots are used to replace people to do routine jobs. Because meal is an important part of the catering industry, we aim to design and develop a robot to deliver meals for saving cost and improving a restaurant’s performance in this paper. However, for the existing meal delivery system, the guests must make their meals by themselves. To let the food delivery system become more user-friendly, we integrate an automatic guided vehicle (AGV) and a robotic… More >

  • Open Access

    REVIEW

    Current status of gene therapy in melanoma treatment

    YONGLU WANG1,2,*, WEI YOU1, XUEMING LI3,4,*

    BIOCELL, Vol.44, No.2, pp. 167-174, 2020, DOI:10.32604/biocell.2020.09023

    Abstract Melanoma is the deadliest type of skin cancer and which has a high ability of metastasis. Surgery is an effective method to treat I or II stage melanoma patients. However, there are few treatment options for metastatic melanoma. Gene therapy is one of the attractive options and is considered as the future direction for treating melanoma. This review mainly discusses the properties and challenges of the various gene therapies in melanoma, especially the delivery systems and gene targeting. More >

Displaying 1-10 on page 1 of 5. Per Page  

Share Link