Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    Analytical and Numerical Solutions of Riesz Space Fractional Advection-Dispersion Equations with Delay

    Mahdi Saedshoar Heris1, Mohammad Javidi1, Bashir Ahmad2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.1, pp. 249-272, 2019, DOI:10.32604/cmes.2019.08080

    Abstract In this paper, we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay (RFADED). We utilize the fractional backward differential formulas method of second order (FBDF2) and weighted shifted Grünwald difference (WSGD) operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED. Firstly, the FBDF2 and the shifted Grünwald methods are introduced. Secondly, based on the FBDF2 method and the WSGD operators, the finite difference method is applied to the problem. We also show that our numerical schemes are conditionally stable and convergent with the accuracy More >

  • Open Access

    ARTICLE

    Damped and Divergence Exact Solutions for the Duffing Equation Using Leaf Functions and Hyperbolic Leaf Functions

    Kazunori Shinohara1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 599-647, 2019, DOI:10.31614/cmes.2019.04472

    Abstract According to the wave power rule, the second derivative of a function x(t) with respect to the variable t is equal to negative n times the function x(t) raised to the power of 2n-1. Solving the ordinary differential equations numerically results in waves appearing in the figures. The ordinary differential equation is very simple; however, waves, including the regular amplitude and period, are drawn in the figure. In this study, the function for obtaining the wave is called the leaf function. Based on the leaf function, the exact solutions for the undamped and unforced Duffing equations… More >

  • Open Access

    ARTICLE

    Solving the Nonlinear Variable Order Fractional Differential Equations by Using Euler Wavelets

    Yanxin Wang1, *, Li Zhu1, Zhi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 339-350, 2019, DOI:10.31614/cmes.2019.04575

    Abstract An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper. The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented. Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations. And the convergence of the Euler wavelets basis is given. The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy. More >

  • Open Access

    ARTICLE

    A Reliable Stochastic Numerical Analysis for Typhoid Fever Incorporating With Protection Against Infection

    Muhammad Shoaib Arif1,*, Ali Raza1, Muhammad Rafiq2, Mairaj Bibi3, Rabia Fayyaz3, Mehvish Naz3, Umer Javed4

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 787-804, 2019, DOI:10.32604/cmc.2019.04655

    Abstract In this paper, a reliable stochastic numerical analysis for typhoid fever incorporating with protection against infection has been considered. We have compared the solutions of stochastic and deterministic typhoid fever model. It has been shown that the stochastic typhoid fever model is more realistic as compared to the deterministic typhoid fever model. The effect of threshold number T* hold in stochastic typhoid fever model. The proposed framework of the stochastic non-standard finite difference scheme (SNSFD) preserves all dynamical properties like positivity, bounded-ness and dynamical consistency defined by Mickens, R. E. The stochastic numerical simulation of More >

  • Open Access

    ARTICLE

    A Nonlocal Operator Method for Partial Differential Equations with Application to Electromagnetic Waveguide Problem

    Timon Rabczuk1,2,*, Huilong Ren3, Xiaoying Zhuang4,5

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 31-55, 2019, DOI:10.32604/cmc.2019.04567

    Abstract A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations. Common differential operators as well as the variational forms are defined within the context of nonlocal operators. The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and simplicity, which is necessary for the eigenvalue analysis such as the waveguide problem. The present formulation is applied to solve the differential electromagnetic vector wave equations based on electric fields. The governing equations are converted into nonlocal integral form. An hourglass energy functional is More >

  • Open Access

    ARTICLE

    Numerical Treatment for Stochastic Computer Virus Model

    Ali Raza1, Muhammad Shoaib Arif1,*, Muhammad Rafiq2, Mairaj Bibi3, Muhammad Naveed1, Muhammad Usman Iqbal4, Zubair Butt4, Hafiza Anum Naseem4, Javeria Nawaz Abbasi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 445-465, 2019, DOI:10.32604/cmes.2019.06454

    Abstract This writing is an attempt to explain a reliable numerical treatment for stochastic computer virus model. We are comparing the solutions of stochastic and deterministic computer virus models. This paper reveals that a stochastic computer virus paradigm is pragmatic in contrast to the deterministic computer virus model. Outcomes of threshold number C hold in stochastic computer virus model. If C < 1 then in such a condition virus controlled in the computer population while C > 1 shows virus persists in the computer population. Unfortunately, stochastic numerical methods fail to cope with large step sizes of time. More >

  • Open Access

    ARTICLE

    The Definition and Numerical Method of Final Value Problem and Arbitrary Value Problem

    Shixiong Wang1,∗, Jianhua He1, Chen Wang2, Xitong Li1

    Computer Systems Science and Engineering, Vol.33, No.5, pp. 379-387, 2018, DOI:10.32604/csse.2018.33.379

    Abstract Many Engineering Problems could be mathematically described by FinalValue Problem, which is the inverse problem of InitialValue Problem. Accordingly, the paper studies the final value problem in the field of ODE problems and analyses the differences and relations between initial and final value problems. The more general new concept of the endpoints-value problem which could describe both initial and final problems is proposed. Further, we extend the concept into inner-interval value problem and arbitrary value problem and point out that both endpoints-value problem and inner-interval value problem are special forms of arbitrary value problem. Particularly, More >

  • Open Access

    ARTICLE

    Exact Solutions of the Cubic Duffing Equation by Leaf Functions under Free Vibration

    Kazunori Shinohara1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 149-215, 2018, DOI:10.3970/cmes.2018.02179

    Abstract Exact solutions of the cubic Duffing equation with the initial conditions are presented. These exact solutions are expressed in terms of leaf functions and trigonometric functions. The leaf function r=sleafn(t) or r=cleafn(t) satisfies the ordinary differential equation dx2/dt2=-nr2n-1. The second-order differential of the leaf function is equal to -n times the function raised to the (2n-1) power of the leaf function. By using the leaf functions, the exact solutions of the cubic Duffing equation can be derived under several conditions. These solutions are constructed using the integral functions of leaf functions sleaf2(t) and cleaf2(t) for More >

  • Open Access

    ARTICLE

    Solving Fractional Integro-Differential Equations by Using Sumudu Transform Method and Hermite Spectral Collocation Method

    Y. A. Amer1, A. M. S. Mahdy1, 2, *, E. S. M. Youssef1

    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 161-180, 2018, DOI:10.3970/cmc.2018.054.161

    Abstract In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. The fractional derivatives are described in the Caputo sense. The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations. More >

  • Open Access

    ARTICLE

    A LARGE PARAMETER SPECTRAL PERTURBATION METHOD FOR NONLINEAR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS THAT MODELS BOUNDARY LAYER FLOW PROBLEMS

    T. M. Agbajea,b, S. S. Motsaa,* , S. Mondalc,† , P. Sibandaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-13, 2017, DOI:10.5098/hmt.9.36

    Abstract In this work, we present a compliment of the spectral perturbation method (SPM) for solving nonlinear partial differential equations (PDEs) with applications in fluid flow problems. The (SPM) is a series expansion based approach that uses the Chebyshev spectral collocation method to solve the governing sequence of differential equation generated by the perturbation series approximation. Previously the SPM had the limitation of being used to solve problems with small parameters only. This current investigation seeks to improve the performance of the SPM by doing the series expansion about a large parameter. The new method namely… More >

Displaying 61-70 on page 7 of 126. Per Page