Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    Numerical Solutions of Fractional System of Partial Differential Equations By Haar Wavelets

    F. Bulut1,2, Ö. Oruç3, A. Esen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.4, pp. 263-284, 2015, DOI:10.3970/cmes.2015.108.263

    Abstract In this paper, time fractional one dimensional coupled KdV and coupled modified KdV equations are solved numerically by Haar wavelet method. Proposed method is new in the sense that it doesn’t use fractional order Haar operational matrices. In the proposed method L1 discretization formula is used for time discretization where fractional derivatives are Caputo derivative and spatial discretization is made by Haar wavelets. L2 and L error norms for various initial and boundary conditions are used for testing accuracy of the proposed method when exact solutions are known. Numerical results which produced by the proposed method for More >

  • Open Access

    ARTICLE

    A Micromechanical Model for Estimating the Effective Stiffness of a Pair of Micro-cracked Interfaces in an Orthotropic Trimaterial under Inplane Deformations

    X. Wang1, W.T. Ang1,2, H. Fan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.2, pp. 81-101, 2015, DOI:10.3970/cmes.2015.107.081

    Abstract A micromechanical model is proposed here for estimating the effective stiffness of a pair of parallel microscopically damaged interfaces in a trimaterial under inplane elastostatic deformations. The trimaterial is made of an orthotropic thin layer sandwiched between two orthotropic half-spaces. The microscopically damaged interfaces are modeled using periodically distributed interfacial micro-cracks. The micromechanical model is formulated and numerically solved in terms of hypersingular boundary integro-differential equations. The effects of the width of the thin layer, the micro-crack densities of the two interfaces and the material constants of the thin layer and the two half-spaces on More >

  • Open Access

    ARTICLE

    New Spectral Solutions of Multi-Term Fractional-Order Initial Value ProblemsWith Error Analysis

    W. M. Abd- Elhameed1,2, Y. H. Youssri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 375-398, 2015, DOI:10.3970/cmes.2015.105.375

    Abstract In this paper, a new spectral algorithm for solving linear and nonlinear fractional-order initial value problems is established. The key idea for obtaining the suggested spectral numerical solutions for these equations is actually based on utilizing the ultraspherical wavelets along with applying the collocation method to reduce the fractional differential equation with its initial conditions into a system of linear or nonlinear algebraic equations in the unknown expansion coefficients. The convergence and error analysis of the suggested ultraspherical wavelets expansion are carefully discussed. For the sake of testing the proposed algorithm, some numerical examples are More >

  • Open Access

    ARTICLE

    Numerical Study for a Class of Variable Order Fractional Integral-differential Equation in Terms of Bernstein Polynomials

    Jinsheng Wang1, Liqing Liu2, Yiming Chen2, Lechun Liu2, Dayan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 69-85, 2015, DOI:10.3970/cmes.2015.104.069

    Abstract The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials. The fractional derivative is described in the Caputo sense. Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable. By solving the algebraic equations, the numerical solutions are acquired. The method in general is easy to implement and yields good results. Numerical examples are provided to demonstrate the validity and applicability of More >

  • Open Access

    ARTICLE

    Numerical Solution of Fractional Fredholm-Volterra Integro-Differential Equations by Means of Generalized Hat Functions Method

    Baofeng Li 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.2, pp. 105-122, 2014, DOI:10.3970/cmes.2014.099.105

    Abstract In this paper, operational matrix method based on the generalized hat functions is introduced for the approximate solutions of linear and nonlinear fractional integro-differential equations. The fractional order generalized hat functions operational matrix of integration is also introduced. The linear and nonlinear fractional integro-differential equations are transformed into a system of algebraic equations. In addition, the method is presented with error analysis. Numerical examples are included to demonstrate the validity and applicability of the approach. More >

  • Open Access

    ARTICLE

    Numerical Solution for a Class of Linear System of Fractional Differential Equations by the Haar Wavelet Method and the Convergence Analysis

    Yiming Chen1, Xiaoning Han1, Lechun Liu 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.5, pp. 391-405, 2014, DOI:10.3970/cmes.2014.097.391

    Abstract In this paper, a class of linear system of fractional differential equations is considered. It has been solved by operational matrix of Haar wavelet method which converts the problem into algebraic equations. Moreover the convergence of the method is studied, and three numerical examples are provided to demonstrate the accuracy and efficiency. More >

  • Open Access

    ARTICLE

    Frequency Domain Based Solution for Certain Class of Wave Equations: An exhaustive study of Numerical Solutions

    Vinita Chellappan1, S. Gopalakrishnan1 and V. Mani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.2, pp. 131-174, 2014, DOI:10.3970/cmes.2014.097.131

    Abstract The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly… More >

  • Open Access

    ARTICLE

    How to Select the Value of the Convergence Parameter in the Adomian Decomposition Method

    Lei Lu1,2, Jun-Sheng Duan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 35-52, 2014, DOI:10.3970/cmes.2014.097.035

    Abstract In this paper, we investigate the problem of selecting of the convergence parameter c in the Adomian decomposition method. Through the curves of the n-term approximations Φn(t;c) versus c for different specified values of n and t, we demonstrate how to determine the value of c such that the decomposition series has a larger effective region of convergence. More >

  • Open Access

    ARTICLE

    Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations

    J.R. Zabadal1, B. Bodmann1, V. G. Ribeiro2, A. Silveira2, S. Silveira2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.4, pp. 215-227, 2014, DOI:10.3970/cmes.2014.103.215

    Abstract This work presents a new analytical method to transform exact solutions of linear diffusion equations into exact ones for nonlinear advection-diffusion models. The proposed formulation, based on Bäcklund transformations, is employed to obtain velocity fields for the unsteady two-dimensional Helmholtz equation, starting from analytical solutions of a heat conduction type model. More >

  • Open Access

    ARTICLE

    Space-time Discontinuous Galerkin Method Based on a New Generalized Flux Vector Splitting Method for Multi-dimensional Nonlinear Hyperbolic Systems

    P.A. Trapper1, P.Z. Bar-Yoseph2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 19-47, 2014, DOI:10.3970/cmes.2014.103.019

    Abstract The space-time discontinuous Galerkin method for multi-dimensional nonlinear hyperbolic systems is enhanced with a generalized technique for splitting a flux vector that is not limited to the homogeneity property of the flux. This technique, based on the flux’s characteristic decomposition, extends the scope of the method’s applicability to a wider range of problems, including elastodynamics. The method is used for numerical solution of a number of representative problems based on models of vibrating string and vibrating rod that involve the propagation of a sharp front through the solution domain. More >

Displaying 71-80 on page 8 of 126. Per Page