Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Simple "Residual-Norm" Based Algorithms, for the Solution of a Large System of Non-Linear Algebraic Equations, which Converge Faster than the Newton’s Method

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 279-304, 2011, DOI:10.3970/cmes.2011.071.279

    Abstract For solving a system of nonlinear algebraic equations (NAEs) of the type: F(x)=0, or Fi(xj) = 0, i,j = 1,...,n, a Newton-like algorithm has several drawbacks such as local convergence, being sensitive to the initial guess of solution, and the time-penalty involved in finding the inversion of the Jacobian matrix ∂Fi/∂xj. Based-on an invariant manifold defined in the space of (x,t) in terms of the residual-norm of the vector F(x), we can derive a gradient-flow system of nonlinear ordinary differential equations (ODEs) governing the evolution of x with a fictitious time-like variable t as an independent variable. More >

  • Open Access

    ARTICLE

    A New Insight into the Differential Quadrature Method in Solving 2-D Elliptic PDEs

    Ying-Hsiu Shen1, Chein-Shan Liu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.2, pp. 157-178, 2011, DOI:10.3970/cmes.2011.071.157

    Abstract When the local differential quadrature (LDQ) has been successfully applied to solve two-dimensional problems, the global method of DQ still has a problem by requiring to solve the inversions of ill-posed matrices. Previously, when one uses (n-1)th order polynomial test functions to determine the weighting coefficients with n grid points, the resultant n ×n Vandermonde matrix is highly ill-conditioned and its inversion is hard to solve. Now we use (m-1)th order polynomial test functions by n grid points that the size of Vandermonde matrix is m×n, of which m is much less than n. We More >

  • Open Access

    ARTICLE

    Numerical Simulations for Coupled Pair of Diffusion Equations by MLPG Method

    S. Abbasbandy1,2, V. Sladek3, A. Shirzadi1, J. Sladek3

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.1, pp. 15-38, 2011, DOI:10.3970/cmes.2011.071.015

    Abstract This paper deals with the development of a new method for solution of initial-boundary value problems governed by a couple of nonlinear diffusion equations occurring in the theory of self-organization in non-equilibrium systems. The time dependence is treated by linear interpolation using the finite difference method and the semi-discrete partial differential equations are considered in a weak sense by using the local integral equation method with approximating 2-d spatial variations of the field variables by the Moving Least Squares. The evaluation techniques are discussed and the applicability of the presented method is demonstrated on two More >

  • Open Access

    ABSTRACT

    General ray method for solution of the Dirichlet boundary value problems for elliptic partial differential equations in domains with complicated geometry

    A. Grebennikov1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 85-90, 2010, DOI:10.3970/icces.2010.015.085

    Abstract New General Ray (GR) method for solution of the Dirichlet boundary value problem for the class of elliptic Partial Differential Equations (PDE) is proposed. GR-method consists in application of the Radon transform directly to the PDE and in reduction PDE to assemblage of Ordinary Differential Equations (ODE). The class of the PDE includes the Laplace, Poisson and Helmgoltz equations. GR-method presents the solution of the Dirichlet boundary value problem for this type of equations by explicit analytical formulas that use the direct and inverse Radon transform. Proposed version of GR-method justified theoretically, realized by fast algorithms and More >

  • Open Access

    ARTICLE

    An Enhanced Fictitious Time Integration Method for Non-Linear Algebraic Equations With Multiple Solutions: Boundary Layer, Boundary Value and Eigenvalue Problems

    Chein-Shan Liu1, Weichung Yeih2, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.3, pp. 301-324, 2010, DOI:10.3970/cmes.2010.059.301

    Abstract When problems in engineering and science are discretized, algebraic equations appear naturally. In a recent paper by Liu and Atluri, non-linear algebraic equations (NAEs) were transformed into a nonlinear system of ODEs, which were then integrated by a method labelled as the Fictitious Time Integration Method (FTIM). In this paper, the FTIM is enhanced, by using the concept of arepellorin the theory ofnonlinear dynamical systems, to situations where multiple-solutions exist. We label this enhanced method as MSFTIM. MSFTIM is applied and illustrated in this paper through solving boundary-layer problems, boundary-value problems, and eigenvalue problems with More >

  • Open Access

    ARTICLE

    A High-Order Time and Space Formulation of the Unsplit Perfectly Matched Layer for the Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML)

    R. Martin1, D. Komatitsch1,2, S. D. Gedney3, E. Bruthiaux1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 17-42, 2010, DOI:10.3970/cmes.2010.056.017

    Abstract Unsplit convolutional perfectly matched layers (CPML) for the velocity and stress formulation of the seismic wave equation are classically computed based on a second-order finite-difference time scheme. However it is often of interest to increase the order of the time-stepping scheme in order to increase the accuracy of the algorithm. This is important for instance in the case of very long simulations. We study how to define and implement a new unsplit non-convolutional PML called the Auxiliary Differential Equation PML (ADE-PML), based on a high-order Runge-Kutta time-stepping scheme and optimized at grazing incidence. We demonstrate More >

  • Open Access

    ARTICLE

    Space-Time Adaptive Fup Multi-Resolution Approach for Boundary-Initial Value Problems

    Hrvoje Gotovac1, Vedrana Kozulić2, Blaž Gotovac1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 173-198, 2010, DOI:10.3970/cmc.2010.015.173

    Abstract The space-time Adaptive Fup Collocation Method (AFCM) for solving boundary-initial value problems is presented. To solve the one-dimensional initial boundary value problem, we convert the problem into a two-dimensional boundary value problem. This quasi-boundary value problem is then solved simultaneously in the space-time domain with a collocation technique and by using atomic Fup basis functions. The proposed method is a generally meshless methodology because it requires only the addition of collocation points and basis functions over the domain, instead of the classical domain discretization and numerical integration. The grid is adapted progressively by setting the More >

  • Open Access

    ARTICLE

    A Scalar Homotopy Method for Solving an Over/Under-Determined System of Non-Linear Algebraic Equations

    Chein-Shan Liu1, Weichung Yeih2, Chung-Lun Kuo3, Satya N. Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 47-72, 2009, DOI:10.3970/cmes.2009.053.047

    Abstract Iterative algorithms for solving a system of nonlinear algebraic equations (NAEs): Fi(xj) = 0, i, j = 1,... ,n date back to the seminal work of Issac Newton. Nowadays a Newton-like algorithm is still the most popular one to solve the NAEs, due to the ease of its numerical implementation. However, this type of algorithm is sensitive to the initial guess of solution, and is expensive in terms of the computations of the Jacobian matrix ∂Fi/∂xj and its inverse at each iterative step. In addition, the Newton-like methods restrict one to construct an iteration procedure for n-variables… More >

  • Open Access

    ARTICLE

    Solution Methods for Nonsymmetric Linear Systems with Large off-Diagonal Elements and Discontinuous Coefficients

    Dan Gordon1, Rachel Gordon2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 23-46, 2009, DOI:10.3970/cmes.2009.053.023

    Abstract Linear systems with very large off-diagonal elements and discontinuous coefficients (LODC systems) arise in some modeling cases, such as those involving heterogeneous media. Such problems are usually solved by domain decomposition methods, but these can be difficult to implement on unstructured grids or when the boundaries between subdomains have a complicated geometry. Gordon and Gordon have shown that Björck and Elfving's (sequential) CGMN algorithm and their own block-parallel CARP-CG are very robust and efficient on strongly convection dominated cases (but without discontinuous coefficients). They have also shown that scaling the equations by dividing each equation… More >

  • Open Access

    ARTICLE

    On the Convergence of Random Differential Quadrature (RDQ) Method and Its Application in Solving Nonlinear Differential Equations in Mechanics

    Hua Li1, Shantanu S. Mulay1, Simon See2

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.1, pp. 43-82, 2009, DOI:10.3970/cmes.2009.048.043

    Abstract Differential Quadrature (DQ) is one of the efficient derivative approximation techniques but it requires a regular domain with all the points distributed only along straight lines. This severely restricts the DQ while solving the irregular domain problems discretized by the random field nodes. This limitation of the DQ method is overcome in a proposed novel strong-form meshless method, called the random differential quadrature (RDQ) method. The RDQ method extends the applicability of the DQ technique over the irregular or regular domains discretized using the random field nodes by approximating a function value with the fixed… More >

Displaying 71-80 on page 8 of 93. Per Page