Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Thermodynamic Analysis and Optimization of the C3/MRC Liquefaction Process

    Guisheng Wang*

    Energy Engineering, Vol.120, No.6, pp. 1503-1514, 2023, DOI:10.32604/ee.2023.027416

    Abstract In the natural gas liquefaction process, the mixed refrigerant natural gas liquefaction process is widely used in LNG liquefaction plants because of its advantages of low energy consumption. This paper focuses on the influences of important parameters in the C3/MRC liquefaction process, that is, the comparison between propane precooling temperature and the number of moles of methane in mixed refrigerant, power consumption and loss. In addition, the total process was optimized with the optimizer and manual adjustment in HYSYS software to minimize the total power consumption. The results show that with increasing propane precooling temperature, the propane flow rate is… More >

  • Open Access

    ARTICLE

    Hemodynamic Analysis and Diagnosis Based on Multi-Deep Learning Models

    Xing Deng1,2, Feipeng Da1,*, Haijian Shao2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1369-1383, 2023, DOI:10.32604/fdmp.2023.024836

    Abstract This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques. The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells, namely, eosinophils, neutrophils, monocytes, and lymphocytes, known for their relationship with human body damage, inflammatory regions, and organ illnesses, in particular, and with the health of the immune system and other hazards, such as cardiovascular disease or infections, more in general. The results… More > Graphic Abstract

    Hemodynamic Analysis and Diagnosis Based on Multi-Deep Learning Models

  • Open Access

    ARTICLE

    Design and Dynamic Analysis of Pipeline Dredging Devices

    Zhong Chen1,2,*, Yalin Wang1,2, Yue Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1349-1367, 2023, DOI:10.32604/fdmp.2023.024513

    Abstract In order to improve the efficiency as well the adaptability and operability of traditional devices used to dredge drainage pipelines a new design is presented here, obtained by matching the structural specifications of a drainage pipeline with the working principle of a high-pressure water jet (HPWJ). To effectively improve the water jet nozzle performances, the nozzle’s structural parameters of the proposed device have been analyzed through Computational fluid dynamics (CFD) simulation. The corresponding behavior of the fluids inside and outside the self-rotational nozzle has been numerically simulated. The final design for the nozzle has been optimized taking into account such… More > Graphic Abstract

    Design and Dynamic Analysis of Pipeline Dredging Devices

  • Open Access

    ARTICLE

    Dynamic Analysis of Pipeline Lifting Operations for Different Current Velocities and Wave Heights

    Dapeng Zhang1, Bowen Zhao2,*, Keqiang Zhu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 603-617, 2023, DOI:10.32604/fdmp.2022.023919

    Abstract Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation. The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques. In this study, assuming representative work environment parameters, pipeline lifting operations are investigated numerically. More specifically, a time-domain coupled dynamic analysis method is used to conduct a hydrodynamic analysis under different current velocities and wave heights. The results show that proper operation requires the lifting points are reasonably set in combination with the length of the pipeline and the position of the lifting device on the construction ship. The impact… More > Graphic Abstract

    Dynamic Analysis of Pipeline Lifting Operations for Different Current Velocities and Wave Heights

  • Open Access

    ARTICLE

    Haemodynamic Analysis of the Relationship between the Morphological Alterations of the Ascending Aorta and the Type A Aortic-Dissection Disease

    Qingzhuo Chi1, Huimin Chen1, Lizhong Mu1,*, Ying He1, Yong Luan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 721-743, 2021, DOI:10.32604/fdmp.2021.015200

    Abstract Type A aortic dissection (AD) is one of the most serious cardiovascular diseases, whose risk predictors are controversial. The purpose of this research was to investigate how elongation accompanied by dilation of the ascending aorta (AAo) affects the relevant haemodynamic characteristics using image-based computational models. Five elongated AAos with different levels of dilation have been reconstructed based on the centerlines data of an elderly and an AD patient. Numerical simulations have been performed assuming an inflow waveform and a Windkessel model with three elements for all outflow boundaries. The numerical results have revealed that the elongation of AAo can disturb… More >

  • Open Access

    ARTICLE

    Modeling Additional Twists of Yarn Spun by Lateral Compact Spinning with Pneumatic Groove

    Jindan Lyu1, Longdi Cheng1,*, Bugao Xu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 737-751, 2021, DOI:10.32604/cmes.2021.015153

    Abstract Compact spinning with pneumatic grooves is a spinning process to gather fibers by blended actions of airflow and mechanical forces. Modified from the ring spinning system, the lateral compact spinning with pneumatic grooves can improve yarn appearance and properties due to generated additional twists. In this study, we investigated additional twists of the lateral compact spinning with pneumatic grooves via a finite element (FE) method. An elastic thin rod was used to model a fiber to simulate its dynamic deformation in the three-dimensional space, and the space bar unit was used to simplify the fiber model for the dynamic analysis.… More >

  • Open Access

    ARTICLE

    Thermodynamic Simulation on the Change in Phase for Carburizing Process

    Anh Tuan Hoang1, Xuan Phuong Nguyen2, Osamah Ibrahim Khalaf3, Thi Xuan Tran4, Minh Quang Chau5, Thi Minh Hao Dong2, Duong Nam Nguyen6,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1129-1145, 2021, DOI:10.32604/cmc.2021.015349

    Abstract The type of technology used to strengthen the surface structure of machine parts, typically by carbon-permeation, has made a great contribution to the mechanical engineering industry because of its outstanding advantages in corrosion resistance and enhanced mechanical and physical properties. Furthermore, carbon permeation is considered as an optimal method of heat treatment through the diffusion of carbon atoms into the surface of alloy steel. This study presented research results on the thermodynamic calculation and simulation of the carbon permeability process. Applying Fick’s law, the paper calculated the distribution of carbon concentration in the alloy steel after it is absorbed from… More >

  • Open Access

    ARTICLE

    Development of TD-BEM Formulation for Dynamic Analysis for Twin-Parallel Circular Tunnels in an Elastic Semi-Innite Medium

    Weidong Lei1, Hai Zhou1,*, Hongjun Li2, Rui Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 577-597, 2021, DOI:10.32604/cmes.2021.011857

    Abstract In order to simulate the propagation process of subway vibration of parallel tunnels in semi-infinite rocks or soils, time domain boundary element method (TD-BEM) formulation for analyzing the dynamic response of twin-parallel circular tunnels in an elastic semi-infinite medium is developed in this paper. The time domain boundary integral equations of displacement and stress for the elastodynamic problem are presented based on Betti’s reciprocal work theorem, ignoring contributions from initial conditions and body forces. In the process of establishing time domain boundary integral equations, some virtual boundaries are constructed between finite boundaries and the free boundary to form a boundary… More >

  • Open Access

    ARTICLE

    Novel Android Malware Detection Method Based on Multi-dimensional Hybrid Features Extraction and Analysis

    Yue Li1, Guangquan Xu2,3, Hequn Xian1,*, Longlong Rao3, Jiangang Shi4,*

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 637-647, 2019, DOI:10.31209/2019.100000118

    Abstract In order to prevent the spread of Android malware and protect privacy information from being compromised, this study proposes a novel multidimensional hybrid features extraction and analysis method for Android malware detection. This method is based primarily on a multidimensional hybrid features vector by extracting the information of permission requests, API calls, and runtime behaviors. The innovation of this study is to extract greater amounts of static and dynamic features information and combine them, that renders the features vector for training completer and more comprehensive. In addition, the feature selection algorithm is used to further optimize the extracted information to… More >

  • Open Access

    ARTICLE

    Fine-Grained Binary Analysis Method for Privacy Leakage Detection on the Cloud Platform

    Jiaye Pan1, Yi Zhuang1, *, Xinwen Hu1, 2, Wenbing Zhao3

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 607-622, 2020, DOI:10.32604/cmc.2020.09853

    Abstract Nowadays cloud architecture is widely applied on the internet. New malware aiming at the privacy data stealing or crypto currency mining is threatening the security of cloud platforms. In view of the problems with existing application behavior monitoring methods such as coarse-grained analysis, high performance overhead and lack of applicability, this paper proposes a new fine-grained binary program monitoring and analysis method based on multiple system level components, which is used to detect the possible privacy leakage of applications installed on cloud platforms. It can be used online in cloud platform environments for fine-grained automated analysis of target programs, ensuring… More >

Displaying 1-10 on page 1 of 53. Per Page  

Share Link