Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ABSTRACT

    Dynamic analysis of asymmetrically laminated composite frames

    Fuxing Miao1, Guojun Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.3, pp. 93-94, 2009, DOI:10.3970/icces.2009.012.093

    Abstract Based on elastic wave theory, Pao[1] and his colleagues recently proposed a novel frequency domain matrix method, i.e. the Method of Reverberation-Ray Matrix (MRRM) for solving the transient response of truss-type structures. The theory has been shown accurately coincided with experimental data of a model truss for the early responses.
    Fiber reinforced laminated composites have advantages such as high specific strength, high specific stiffness, corrosion resistance etc.. The dynamic as well as the static behavior of laminated composites is largely dependent upon fiber orientation and ply-stacking sequence. Due to inhomogeneity and anisotropy of the material, these structures are vulnerableto highly… More >

  • Open Access

    ABSTRACT

    Aerodynamic Analysis of Helicopter Rotor using a Time-Domain Panel Method

    Seawook Lee1, Leesang Cho2, Jin-Soo Cho3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.7, No.3, pp. 113-122, 2008, DOI:10.3970/icces.2008.007.113

    Abstract Computational methods based on the solution of the flow model are widely used for the analysis of low-speed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade for the KHP. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung… More >

  • Open Access

    ARTICLE

    Nonlinear Dynamic Analysis of Three-Dimensional Elasto-Plastic Solids by the Meshless Local Petrov-Galerkin (MLPG) Method

    A. Rezaei Mojdehi1,2, A. Darvizeh3, A. Basti2

    CMC-Computers, Materials & Continua, Vol.29, No.1, pp. 15-40, 2012, DOI:10.3970/cmc.2012.029.015

    Abstract The meshless local Petrov-Galerkin approach is proposed for the nonlinear dynamic analysis of three-dimensional (3D) elasto-plastic problems. Galerkin weak-form formulation is applied to derive the discrete governing equations. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a unit test function and local weak-form formulation in three dimensional continua for the general dynamic problems is derived. Three dimensional Moving Least-Square (MLS) approximation is considered as shape function to approximate the field variable of scattered nodes in the problem domain. Normality hypothesis of plasticity is adopted to define the stress-strain… More >

  • Open Access

    ARTICLE

    Analysis of Office-Teaching Comprehensive Buildings Using a Modified Seismic Performance Evaluation Method

    Hanbo Zhu1,2, Changqing Miao1,2,*, Meiling Zhuang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 471-491, 2019, DOI:10.31614/cmes.2019.04382

    Abstract Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes. The research regarding probabilistic seismic loss estimation in domestic building structure is urgent. The evaluation in this paper is based on a 11-story reinforced concrete office building, incremental dynamic analysis (IDA) is conducted in Perform 3D program using models capable to simulate all possible limit states up to collapse. Next, the probability distribution of post-earthquake casualties, rebuild costs repair costs and business downtime loss are calculated in PACT software for the studied building considering the modified component vulnerability groups and population flow models. The… More >

  • Open Access

    ARTICLE

    Dynamic Analysis of Non-Symmetric Functionally Graded (FG) Cylindrical Structure under Shock Loading by Radial Shape Function Using Meshless Local Petrov-Galerkin (MLPG) Method with Nonlinear Grading Patterns

    Y. Sadeghi Ferezghi1, M.R. Sohrabi1, S.M Mosavi Nezhad 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.4, pp. 497-520, 2017, DOI:10.3970/cmes.2017.113.497

    Abstract In this paper, dynamic behavior of non-symmetric Functionally Graded (FG) cylindrical structure under shock loading is carried out. Dynamic equations in the polar coordinates are drawn out using Meshless Local Petrov-Galerkin (MLPG) method. Nonlinear volume fractions are used for radial direction to simulate the mechanical properties of Functionally Graded Material (FGM). To solve dynamic equations of non-symmetric FG cylindrical structure in the time domain, the MLPG method are combined with the Laplace transform method. For computing the inverse Laplace transform in the present paper, the Talbot algorithm for the numerical inversion is used. To verify the obtained results by the… More >

  • Open Access

    ARTICLE

    Large Deformation Hyper-Elastic Modeling for Nonlinear Dynamic Analysis of Two Dimensional Functionally Graded Domains Using the Meshless Local Petrov-Galerkin (MLPG) Method

    Mohammad Hossein Ghadiri Rad1, Farzad Shahabian1,2, Seyed Mahmoud Hosseini3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.3, pp. 135-157, 2015, DOI:10.3970/cmes.2015.108.135

    Abstract A meshless method based on the local Petrov-Galerkin approach is developed for elasto-dynamic analysis of geometrically nonlinear two dimensional (2D) problems in hyper-elastic functionally graded materials. The radial point interpolation method (RPIM) is utilized to build the shape functions and the Heaviside step function is used as the test function. The mechanical properties of functionally graded material are considered to continuously vary in a certain direction and are simulated using a nonlinear power function in volume fraction form. Considering the large deformations, it is assumed that the domain be made of large deformable neo-Hookean hyperelastic materials. Rayleigh damping is employed… More >

  • Open Access

    ARTICLE

    Elastodynamic Analysis of Thick Multilayer Composite Plates by The Boundary Element Method

    J. Useche1, H. Alvarez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.4, pp. 277-296, 2015, DOI:10.3970/cmes.2015.107.277

    Abstract Dynamic stress analysis of laminated composites plates represents a relevant task in designing of aerospace, shipbuilding and automotive components where impulsive loads can lead to sudden structural failure. The mechanical complexity inherent to these kind of components makes the numerical modeling an essential engineering analysis tool. This work deals with dynamic analysis of stresses and deformations in laminated composites thick plates using a new Boundary Element Method formulation. Composite laminated plates were modeled using the Reissner’s plate theory. We propose a direct time-domain formulation based on elastostatic fundamental solution for symmetrical laminated thick plates. Formulation takes into account the rotational… More >

  • Open Access

    ARTICLE

    Numerical Analysis for the Mooring System with Nonlinear Elastic Mooring Cables

    Z.W. Wu1, J.K. Liu1, Z.Q. Liu1,2, Z.R. Lu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.2, pp. 149-168, 2014, DOI:10.3970/cmes.2014.102.149

    Abstract This paper presents numerical analysis for the mooring system with nonlinear elastic mooring cables. The equation of motion for nonlinear elastic mooring cable is established by utilizing finite element method. A marine mooring system of floating rectangular box with nonlinear elastic cables is taken as an illustrative example. The dynamic analysis, static analysis, and uniformity analysis are carried out for the polyester mooring system and the results are compared with those of the steel wire and the chain mooring system. Results from the present study can provide valuable recommendations for the design and construction of the mooring system with nonlinear… More >

  • Open Access

    ARTICLE

    Dynamic Analysis of a Layered Cylinder Reinforced by Functionally Graded Carbon Nanotubes Distributions Subjected to Shock Loading using MLPG Method

    Soleiman Ghouhestani1, Farzad Shahabian1, Seyed Mahmoud Hosseini2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.4, pp. 295-321, 2014, DOI:10.3970/cmes.2014.100.295

    Abstract In this paper, the meshless local Petrov-Galerkin (MLPG) method is exploited for dynamic analysis of functionally graded nanocomposite cylindrical layered structure reinforced by carbon nanotube subjected to mechanical shock loading. The carbon nanotubes (CNTs) are distributed across radial direction on thickness of cylinder, which can be simulated by linear and nonlinear volume fraction. Free vibration and elastic wave propagation are studied for various value of volume fraction exponent at various time intervals. The layered cylinder is assumed to be under axisymmetric and plane strain conditions. Four types of CNTs distributions including uniform and three kinds of functionally graded distributions along… More >

  • Open Access

    ARTICLE

    ACA-accelerated Time Domain BEM for Dynamic Analysis of HTR-PM Nuclear Island Foundation

    Haitao Wang1,2, Zhenhan Yao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.6, pp. 507-527, 2013, DOI:10.3970/cmes.2013.094.507

    Abstract This paper presents the use of a three-dimensional time domain boundary element method (BEM) in conjunction with adaptive cross approximation method (ACA) for dynamic analyses of the HTR-PM nuclear island foundation. The advantage of this approach is that only foundation of the HTR-PM nuclear island and limited surfaces of the supporting half-space soil medium are modeled and analyzed in a direct time stepping scheme. In addition, the ACA can compress the BEM coefficient matrices at each time step efficiently, therefore allowing larger models to be analyzed compared with conventional BEMs. In order to discretize the boundary integral equation (BIE) we… More >

Displaying 21-30 on page 3 of 58. Per Page