Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access



    Jason Velardoa, Randeep Singha,*, Mohammad Shahed Ahameda, Masataka Mochizukib, Abhijit Datec, Aliakbar Akbarzadehc

    Frontiers in Heat and Mass Transfer, Vol.17, No.1, pp. 1-11, 2021, DOI:10.5098/hmt.17.1

    Abstract Thermal solutions play an integral role in managing heat loads for electronic devices. As these electronics become more compact and portable, improved thermal management solutions need to be introduced. Thin flattened heat pipes (0.8mm – 2.0mm thick) and piezoelectric fans (1mm thick) have been proposed here for this purpose. The maximum heat carrying capacity of the flattened heat pipe was experimentally determined and found to be a function of the flattened heat pipe thickness. Reductions from 48W at 2.0mm to 7W at 0.8mm were observed. This was expected to be due to capillary limitations. The piezoelectric fan could be operated… More >

  • Open Access


    A New Method of Roughness Construction and Analysis of Construct Parameters

    Hui Lu, Xinyue Duan, Minghai Xu*, Liang Gong, Bin Ding

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1193-1204, 2020, DOI:10.32604/cmes.2020.08989

    Abstract In micro-manufacturing, roughness is unavoidable due to the tolerance of micro-machining methods. Roughness in microchannel could have a significant influence on flow and heat transfer since the size of microchannel is very small. In our work, roughness is modeled as a superposition of waves. A simple Fourier series method is proposed to construct the rough surface. With this method, roughness is constructed on the bottom of the rectangular microchannel which has a hydraulic diameter of 0.5 mm. Two important parameters during roughness construction, triangulate size and correlation length are studied under the same relative roughness 1%. Results show that flow… More >

  • Open Access


    Numerical Study of Melting Coupled Natural Convection Around Localized Heat Sources

    Mustapha Faraji1, El Alami Mustapha, Najam Mostafa

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 279-298, 2014, DOI:10.3970/fdmp.2014.010.279

    Abstract A study is reported of heat transfer and melting in a fan-less thermal management system consisting of an insulated horizontal cavity filled with a phase change material (PCM) and heated from below by a conducting plate supporting three identical protruding heat sources. Such a PCM enclosure can be used as a heat sink for the cooling of electronic components. The advantage of this cooling strategy is that PCMs characterized by high energy storage density and small transition temperature interval, are able to store a high amount of heat (thereby providing efficient passive cooling). A two-dimensional simulation model is developed that… More >

Displaying 1-10 on page 1 of 3. Per Page  

Share Link