Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Endothelial cells as mechanical transducers: Enzymatic activity and network formation under cyclic strain

    A. Shukla1,1, A.R. Dunn2,2, M.A. Moses3,3, K.J. Van Vliet4,4

    Molecular & Cellular Biomechanics, Vol.1, No.4, pp. 279-290, 2004, DOI:10.3970/mcb.2004.001.279

    Abstract Although it is established that endothelial cells can respond to external mechanical cues (e.g., alignment in the direction of fluid shear stress), the extent to which mechanical stress and strain applied via the endothelial cell substrate impact biomolecular and cellular processes is not well-understood. This issue is particularly important in the context of inflammation, vascular remodeling, and cancer progression, as each of these processes occurs concurrently with localized increases in strain and marked changes in molecules secreted by adjacent cells. Here, we systematically vary the level and duration of cyclic tensile strain applied to human dermal microvascular and bovine capillary… More >

  • Open Access

    ARTICLE

    Mitochondrial Remodeling in Endothelial Cells under Cyclic Stretch is Independent of Drp1 Activation

    Megumi Baba1, Aya Shinmura1, Shigeru Tada1, Taku Amo2, Akira Tsukamoto1,*

    Molecular & Cellular Biomechanics, Vol.16, No.1, pp. 1-12, 2019, DOI:10.32604/mcb.2019.05199

    Abstract Mitochondria in endothelial cells remodel morphologically when supraphysiological cyclic stretch is exerted on the cells. During remodeling, mitochondria become shorter, but how they do so remains elusive. Drp1 is a regulator of mitochondrial morphologies. It shortens mitochondria by shifting the balance from mitochondrial fusion to fission. In this study, we hypothesized that Drp1 activation is involved in mitochondrial remodeling under supraphysiological cyclic stretch. To verify the involvement of Drp1, its activation was first quantified with Western blotting, but Drp1 was not significantly activated in endothelial cells under supraphysiological cyclic stretch. Next, Drp1 activation was inhibited with Mdivi-1, but this did… More >

  • Open Access

    ARTICLE

    Short-Term Shear Stress Induces Rapid Actin Dynamics in Living Endothelial Cells

    Colin K. Choi*, Brian P. Helmke∗,†

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 247-258, 2008, DOI:10.3970/mcb.2008.005.247

    Abstract Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the first 12 min; activity… More >

  • Open Access

    ARTICLE

    Strain-induced Orientation Response of Endothelial Cells: Effect of Substratum Adhesiveness and Actin-myosin Contractile Level

    Hai Ngu*, Lan Lu*, Sara J. Oswald*, Sarah Davis*, Sumona Nag*, Frank C-P Yin

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 69-82, 2008, DOI:10.3970/mcb.2008.005.069

    Abstract Endothelial cells subjected to cyclic stretching change orientation so as to be aligned perpendicular to the direction of applied strain in a magnitude and time-dependent manner. Although this type of response is not the same as motility, it could be governed by motility-related factors such as substratum adhesiveness and actin-myosin contractile level. To examine this possibility, human aortic endothelial cells (HAEC) were uniaxially, cyclically stretched on silicone rubber membranes coated with various concentrations of fibronectin, collagen type IV and laminin to produce differing amounts of adhesiveness (measured using a radial flow detachment assay). Cells were subjected to 10% pure cyclic… More >

  • Open Access

    ARTICLE

    Role of Shear Stress Direction in Endothelial Mechanotransduction

    Shu Chien*

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 1-8, 2008, DOI:10.3970/mcb.2008.005.001

    Abstract Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At… More >

  • Open Access

    ARTICLE

    Topological Remodeling of Cultured Endothelial Cells by Characterized Cyclic Strains

    Nooshin Haghighipour, Mohammad Tafazzoli-Shadpour, Mohammad Ali Shokrgozar, Samira Amini, Amir Amanzadeh, Mohammad Taghi Khorasani

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 189-200, 2007, DOI:10.3970/mcb.2007.004.189

    Abstract Evaluation of mechanical environment on cellular function is a major field of study in cellular engineering. Endothelial cells lining the entire vascular lumen are subjected to pulsatile blood pressure and flow. Mechanical stresses caused by such forces determine function of arteries and their remodeling. Critical values of mechanical stresses contribute to endothelial damage, plaque formation and atherosclerosis. A device to impose cyclic strain on cultured cells inside an incubator was designed and manufactured operating with different load amplitudes, frequencies, numbers of cycles and ratios of extension to relaxation. Endothelial cells cultured on collagen coated silicon scaffolds were subjected to cyclic… More >

  • Open Access

    ARTICLE

    Tensorial Description of the Geometrical Arrangement of the Fibrous Molecules in Vascular Endothelial Cells

    Wei Huang*

    Molecular & Cellular Biomechanics, Vol.4, No.3, pp. 119-132, 2007, DOI:10.3970/mcb.2007.004.119

    Abstract This work presents a tensorial description of the geometrical arrangement of the cellular molecules in the vascular endothelial cells. The geometrical arrangement of the molecules is the foundation of the mechanical properties of the molecular aggregates, which are the foundation of the physical behavior of the cells and tissues. For better studying the physical behavior of the cells and tissues, the geometrical arrangement of the cellular molecules has to be described quantitatively. In this paper, a second order molecular configuration tensor Pijg for fibrous protein in the cells is defined for quantitative measurement. Here, the subscripts i, j refer… More >

  • Open Access

    ARTICLE

    Orientation of Apical and Basal Actin Stress Fibers in Isolated and Subconfluent Endothelial Cells as an Early Response to Cyclic Stretching

    Hiroshi Yamada∗,†, Hirokazu Ando

    Molecular & Cellular Biomechanics, Vol.4, No.1, pp. 1-12, 2007, DOI:10.3970/mcb.2007.004.001

    Abstract We investigated the response of apical and basal actin stress fibers (SFs) and its dependency on cell confluency for endothelial cells subjected to cyclic stretching. Porcine aortic endothelial cells from the 2nd and 5th passages were transferred to a fibronectin-coated silicone chamber with 5000–8000 cells/cm2(isolated condition), positioning the cells apart, or with 25,000–27,000 cells/cm2(subconfluent condition), allowing cell-to-cell contact. The substrate was stretched cyclically by 0.5 Hz for 2 h with a peak strain on the substrate that was 15% in the stretch direction and –4% in the transverse direction. The actin filaments (AFs) were stained with rhodamine phalloidin and their… More >

  • Open Access

    ARTICLE

    Adhesive Force of Human Hepatoma HepG2 Cells to Endothelial Cells and Expression of E-Selectin

    Guanbin Song∗,†, Toshiro Ohashi, Naoya Sakamoto, Masaaki Sato

    Molecular & Cellular Biomechanics, Vol.3, No.2, pp. 61-68, 2006, DOI:10.3970/mcb.2006.003.061

    Abstract Expression of adhesion molecules may play an important role in the interaction of tumor cells with vascular endothelial cells during tumor invasion and metastasis. In this study, the adhesive force of human hepatoma HepG2 cells to human umbilical vein endothelial cells (HUVECs) was investigated using a micropipette aspiration technique. Expression of an adhesion molecule, E-selectin, was also observed by immunofluorescence microscopy. In particular, the adhesive force after stimulation of HUVECs with recombinant human interleukin-1β (rhIL-1β) was examined. The results demonstrated that the adhesive force of HepG2 cells to stimulated HUVECs is significantly higher than that of unstimulated control cells, and… More >

  • Open Access

    ARTICLE

    Evaluation of Tension in Actin Bundle of Endothelial Cells Based on Preexisting Strain and Tensile Properties Measurements

    S. Deguchi1,2, T. Ohashi2, M. Sato2

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 125-134, 2005, DOI:10.3970/mcb.2005.002.125

    Abstract Actin bundles in vascular endothelial cells (ECs) play a critical role in transmitting intracellular forces between separate focal adhesion sites. However, quantitative descriptions of tension level in single actin bundles in a physiological condition are still poorly studied. Here, we evaluated magnitude of preexisting tension in a single actin bundle of ECs on the basis of measurements of its preexisting stretching strain and tensile properties. Cultured ECs expressing fluorescently-labeled actin were treated with detergents to extract acin bundles. One end of an actin bundle was then dislodged from the substrate by using a microneedle, resulting in a shortening of the… More >

Displaying 21-30 on page 3 of 30. Per Page