Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (276)
  • Open Access

    ARTICLE

    Ensemble Recurrent Neural Network-Based Residual Useful Life Prognostics of Aircraft Engines

    Jun Wu1,*, Kui Hu1, Yiwei Cheng2, Ji Wang1, Chao Deng2,*, Yuanhan Wang3

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 317-329, 2019, DOI:10.32604/sdhm.2019.05571

    Abstract Residual useful life (RUL) prediction is a key issue for improving efficiency of aircraft engines and reducing their maintenance cost. Owing to various failure mechanism and operating environment, the application of classical models in RUL prediction of aircraft engines is fairly difficult. In this study, a novel RUL prognostics method based on using ensemble recurrent neural network to process massive sensor data is proposed. First of all, sensor data obtained from the aircraft engines are preprocessed to eliminate singular values, reduce random fluctuation and preserve degradation trend of the raw sensor data. Secondly, three kinds More >

  • Open Access

    ARTICLE

    Defense Against Poisoning Attack via Evaluating Training Samples Using Multiple Spectral Clustering Aggregation Method

    Wentao Zhao1, Pan Li1,*, Chengzhang Zhu1,2, Dan Liu1, Xiao Liu1

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 817-832, 2019, DOI:10.32604/cmc.2019.05957

    Abstract The defense techniques for machine learning are critical yet challenging due to the number and type of attacks for widely applied machine learning algorithms are significantly increasing. Among these attacks, the poisoning attack, which disturbs machine learning algorithms by injecting poisoning samples, is an attack with the greatest threat. In this paper, we focus on analyzing the characteristics of positioning samples and propose a novel sample evaluation method to defend against the poisoning attack catering for the characteristics of poisoning samples. To capture the intrinsic data characteristics from heterogeneous aspects, we first evaluate training data More >

  • Open Access

    RETRACTION

    RETRACTED: A Hybrid Nonlinear Active Noise Control Method Using Chebyshev Nonlinear Filter

    Bin Chen1, *, Shuyue Yu1, Yan Gao2

    Sound & Vibration, Vol.52, No.4, pp. 21-27, 2018, DOI:10.32604/sv.2018.03974

    Abstract Investigations into active noise control (ANC) technique have been conducted with the aim of effective control of the low-frequency noise. In practice, however, the performance of currently available ANC systems degrades due to the effects of nonlinearity in the primary and secondary paths, primary noise and louder speaker. This paper proposes a hybrid control structure of nonlinear ANC system to control the non-stationary noise produced by the rotating machinery on the nonlinear primary path. A fast version of ensemble empirical mode decomposition is used to decompose the non-stationary primary noise into intrinsic mode functions, which More >

  • Open Access

    ARTICLE

    An Ensemble Based Hand Vein Pattern Authentication System

    M. Rajalakshmi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.2, pp. 209-220, 2018, DOI:10.3970/cmes.2018.114.209

    Abstract Amongst several biometric traits, Vein pattern biometric has drawn much attention among researchers and diverse users. It gains its importance due to its difficulty in reproduction and inherent security advantages. Many research papers have dealt with the topic of new generation biometric solutions such as iris and vein biometrics. However, most implementations have been based on small datasets due to the difficulties in obtaining samples. In this paper, a deeper study has been conducted on previously suggested methods based on Convolutional Neural Networks (CNN) using a larger dataset. Also, modifications are suggested for implementation using More >

  • Open Access

    ARTICLE

    A Novel Ensemble Learning Algorithm Based on D-S Evidence Theory for IoT Security

    Changting Shi1, *

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 635-652, 2018, DOI:10.32604/cmc.2018.03754

    Abstract In the last decade, IoT has been widely used in smart cities, autonomous driving and Industry 4.0, which lead to improve efficiency, reliability, security and economic benefits. However, with the rapid development of new technologies, such as cognitive communication, cloud computing, quantum computing and big data, the IoT security is being confronted with a series of new threats and challenges. IoT device identification via Radio Frequency Fingerprinting (RFF) extracting from radio signals is a physical-layer method for IoT security. In physical-layer, RFF is a unique characteristic of IoT device themselves, which can difficultly be tampered. More >

  • Open Access

    ARTICLE

    Differing Mapping using Ensemble of Metamodels for Global Variable-fidelity Metamodeling

    Qi Zhou1, Xinyu Shao1, Ping Jiang1,2, Longchao Cao1, Hui Zhou1, Leshi Shu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.5, pp. 323-355, 2015, DOI:10.3970/cmes.2015.106.323

    Abstract Computational simulation models with different fidelity have been widely used in complex systems design. However, running the most accurate simulation models tends to be very time-consuming and can therefore only be used sporadically, while incorporating less accurate, inexpensive models into the design process may result in inaccurate design alternatives. To make a trade-off between high accuracy and low expense, variable fidelity (VF) metamodeling approaches that aim to integrate information from both low fidelity (LF) and high-fidelity (HF) models have gained increasing popularity. In this paper, a Difference Mapping Framework using Ensemble of Metamodels (DMF-EM) for… More >

Displaying 271-280 on page 28 of 276. Per Page