Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    META-ANALYSIS

    Cardiac Troponin Levels after Percutaneous Atrial Septal Defect Closure: A Qualitative Systematic Review and Meta-Analysis

    Alejandro E. Contreras1,*, Alejandro R. Peirone2, Eduardo Cuestas3

    Congenital Heart Disease, Vol.15, No.1, pp. 13-20, 2020, DOI:10.32604/CHD.2020.011575

    Abstract Introduction: We conducted a systematic review and meta-analysis of published studies to determine the prevalence of troponin elevation after percutaneous atrial septal defect closure (pASDc) as well as to describe the association between troponin elevation and different anatomical risk factors for erosion. Methods: A qualitative systematic review and meta-analysis was undertaken. The selected studies included patients of any age receiving a pASDc; performed under transesophageal echocardiography monitoring; reporting troponin level measurement after the intervention; and indicating prevalence of troponin elevation and/or the association with risk factors for erosion. Results: Six studies were found which included 391 patients in total. The… More >

  • Open Access

    ARTICLE

    Numerical Study on Rock Breaking Mechanism of Supercritical CO2 Jet Based on Smoothed Particle Hydrodynamics

    Xiaofeng Yang1, *, Yanhong Li1, Aiguo Nie1, Sheng Zhi2, Liyuan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1141-1157, 2020, DOI:10.32604/cmes.2020.08538

    Abstract Supercritical carbon dioxide (Sc-CO2) jet rock breaking is a nonlinear impact dynamics problem involving many factors. Considering the complexity of the physical properties of the Sc-CO2 jet and the mesh distortion problem in dealing with large deformation problems using the finite element method, the smoothed particle hydrodynamics (SPH) method is used to simulate and analyze the rock breaking process by Sc-CO2 jet based on the derivation of the jet velocity-density evolution mathematical model. The results indicate that there exisits an optimal rock breaking temperature by Sc-CO2. The volume and length of the rock fracture increase with the rising of the… More >

  • Open Access

    ARTICLE

    The cover-management factor (C) on woodlands of the hilly areas of the Loess Plateau in North China

    Wei TX1, YH Liu2,1

    Phyton-International Journal of Experimental Botany, Vol.85, pp. 305-313, 2016, DOI:10.32604/phyton.2016.85.305

    Abstract Soil erosion is one of most serious environmental and production problems on the Loess Plateau in China. The objectives of this study were to quantify the influence of forest vegetation on soil erosion on slope areas in the Loess Plateau. This was made by using the subfactor method to calculate the vegetation cover management factor (C) of the Universal Soil Loss Equation (USLE). Proper local subfactor parameter values were obtained to offer a theoretical basis and practical guidance for studying the relationship between vegetation and soil erosion on the Loess Plateau. Three subfactors including prior land use (PLU), canopy cover… More >

  • Open Access

    ARTICLE

    Fertilization and association with pioneer herbaceous species on the performance of Pinus pseudostrobus

    Gómez-Romero M1, E de la Barrera2, J Villegas3, R Lindig-Cisneros4

    Phyton-International Journal of Experimental Botany, Vol.82, pp. 135-143, 2013, DOI:10.32604/phyton.2013.82.135

    Abstract When degradation is severe, as it is often the case on acrisols, it is necessary to test the effect of plant-plant interactions in their survival and growth. An experiment was conducted, with substrate from an eroded site (acrisols with gullies) in a shaded greenhouse (30% shade) to evaluate the effect of fertilization and the presence of pioneer herbaceous species in the performance of Pinus pseudostrobus. The pioneer species Lupinus mexicanus and Tithonia tubiformis were used in three experimental treatments and a control. To fertilize, KH2PO4 was applied in four concentration levels. There were a total of 16 treatment combinations when… More >

  • Open Access

    ABSTRACT

    Impact of Plaque Erosion on Stress/Strain and Flow Shear Stress Calculation: An OCT-Based FSI Modeling Study

    Liang Wang1, Haibo Jia2, Luping He2, Rui Lv1, Xiaoya Guo3, Chun Yang4,5, Don P. Giddens6,7, Habib Samady6, Akiko Maehara8, Gary S. Mintz8, Dalin Tang1,*,5

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 23-24, 2019, DOI:10.32604/mcb.2019.07522

    Abstract Plaque erosion, one of the primary causes for coronary thrombosis, is responsible for about one third of the patients with acute coronary syndrome (ACS) [1]. Histological studies characterized the eroded plaque as a plaque with following morphological features: 1) plaque intima having direct contact with intraluminal thrombus due to the absence of endothelium or endothelial injury; 2) without rupture in the fibrous cap; 3) abundance of proteoglycans and smooth muscle cells on the luminal surface under the thrombus [2]. These characteristics has been applied in in vivo diagnosis of plaque erosion using optical coherence tomography (OCT) imaging technology and specific… More >

  • Open Access

    ARTICLE

    Durability of Reinforced Concrete Structures under Coupling Action of Load and Chlorine Erosion

    Yang Li1,*, Dongwei Yang1, Jiangkun Zhang1

    Structural Durability & Health Monitoring, Vol.12, No.1, pp. 51-63, 2018, DOI:10.3970/sdhm.2018.012.051

    Abstract Diffusion behavior of chloride ion in reinforced concrete under bending moment was studied by taking the ratio of bending moment to ultimate flexural capacity as load level indicator. The function relationship between load level and chloride ion diffusion coefficient was established, based on that the limit state equation of the chloride ion critical concentration and chloride ion concentration on surface of the steel bar was established. Then by applying Monte-Carlo method the corrosion probability of reinforcement under different load levels in splash zone was calculated. Calculation results demonstrated that compared with the durability reliability index considering loading effect, the reliability… More >

  • Open Access

    ARTICLE

    Simulation of Mastic Erosion from Open-Graded Asphalt Mixes Using a Hybrid Lagrangian-Eulerian Finite Element Approach

    N.Kringos1, A.Scarpas1, A.P.S. Selvadurai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.3, pp. 147-160, 2008, DOI:10.3970/cmes.2008.028.147

    Abstract This paper presents a numerical approach for the modeling of water flow induced mastic erosion from a permeable asphalt mix and is part of an ongoing effort to model moisture-induced damage in asphalt mixes. Due to the complex composite structure of asphalt mixtures, moisture can infiltrate in various ways into the components and have an adverse effect on its mechanical performance. Depending on the gradation of the asphalt aggregates and the mixing procedure, asphalt structures with a variable permeability may result. Open-graded asphalt mixes are designed with a high interconnected air void content to serve as a drainage layer on… More >

  • Open Access

    ARTICLE

    Prediction of Erosion Wear in Multi-Size Particulate Flow through a Rotating Channel

    K.V. Pagalthivarthi1, P.K. Gupta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 93-122, 2009, DOI:10.3970/fdmp.2009.005.093

    Abstract The objective of the present work is to predict erosive wear in multisize dense slurry flow in a rotating channel. The methodology comprises numerical prediction of two-phase flow which is accomplished using the Galerkin finite element method. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. The effect of various operating parameters such as rotation rate, solids concentration, flow rate, particle size distribution and so forth has been studied. Results indicate that wear rate in general increases along the pressure-side of the channel with rotation rate, overall solids concentration, flow rates etc.… More >

  • Open Access

    ARTICLE

    Detailed Observations of Convective Instability on an Interfacial Salty Layer

    R. Abdeljabar1, F. Onofri2, M.J. Safi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 245-254, 2008, DOI:10.3970/fdmp.2008.004.245

    Abstract This paper focuses on the mechanisms of convective instability in a stable salty gradient layer (i.e. an interfacial salty layer). This layer is assumed to be initially confined between two homogeneous liquid layers: a lower layer composed of salty water of 5wt% concentration and an upper layer composed of distilled water. The mechanisms underlying the interfacial salty layer's instability are depicted experimentally using a PIV technique and via measurements of concentration and temperature. It is found that in addition to the effect of double-diffusion across the interfacial salty layer, different forms of Kelvin-Helmholtz instability occur at different locations:\newline i. At… More >

Displaying 21-30 on page 3 of 29. Per Page