Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (114)
  • Open Access

    ARTICLE

    Al-Biruni Earth Radius (BER) Metaheuristic Search Optimization Algorithm

    El-Sayed M. El-kenawy1,2, Abdelaziz A. Abdelhamid3,4, Abdelhameed Ibrahim5, Seyedali Mirjalili6,7, Nima Khodadad8, Mona A. Al duailij9, Amel Ali Alhussan9,*, Doaa Sami Khafaga9

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1917-1934, 2023, DOI:10.32604/csse.2023.032497 - 03 November 2022

    Abstract Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields. Several metaheuristics and evolutionary optimization algorithms have been emerged recently in the literature and gained widespread attention, such as particle swarm optimization (PSO), whale optimization algorithm (WOA), grey wolf optimization algorithm (GWO), genetic algorithm (GA), and gravitational search algorithm (GSA). According to the literature, no one metaheuristic optimization algorithm can handle all present optimization problems. Hence novel optimization methodologies are still needed. The Al-Biruni earth radius (BER) search optimization algorithm is proposed in this paper. The More >

  • Open Access

    ARTICLE

    An Adaptive Privacy Preserving Framework for Distributed Association Rule Mining in Healthcare Databases

    Hasanien K. Kuba1, Mustafa A. Azzawi2, Saad M. Darwish3,*, Oday A. Hassen4, Ansam A. Abdulhussein5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4119-4133, 2023, DOI:10.32604/cmc.2023.033182 - 31 October 2022

    Abstract It is crucial, while using healthcare data, to assess the advantages of data privacy against the possible drawbacks. Data from several sources must be combined for use in many data mining applications. The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures. Historically, numerous heuristics (e.g., greedy search) and metaheuristics-based techniques (e.g., evolutionary algorithm) have been created for the positive association rule in privacy preserving data mining (PPDM). When it comes to connecting seemingly unrelated diseases and drugs, negative association… More >

  • Open Access

    ARTICLE

    A Modified Bi-Directional Evolutionary Structural Optimization Procedure with Variable Evolutionary Volume Ratio Applied to Multi-Objective Topology Optimization Problem

    Xudong Jiang1,*, Jiaqi Ma1, Xiaoyan Teng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 511-526, 2023, DOI:10.32604/cmes.2022.022785 - 29 September 2022

    Abstract Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive, aviation and construction industries. This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization (BESO). The conventional BESO is provided with constant evolutionary volume ratio (EVR), whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements. To address the issue, the modified BESO with variable EVR is introduced. To compromise the natural frequency and the dynamic stiffness, More >

  • Open Access

    ARTICLE

    A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images

    Fatemeh Sadeghi1, Omid Rostami2, Myung-Kyu Yi3, Seong Oun Hwang3,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 751-768, 2023, DOI:10.32604/cmc.2023.031519 - 22 September 2022

    Abstract Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now. In the meantime, airspace opacities spreads related to lung have been of the most challenging problems in this area. A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases. Similar to most other classification problems, machine learning-based approaches have been the first/most-used candidates in this application. Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Model for Software Reusability Prediction System

    R. Subha1,*, Anandakumar Haldorai1, Arulmurugan Ramu2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2639-2654, 2023, DOI:10.32604/iasc.2023.028153 - 17 August 2022

    Abstract The most significant invention made in recent years to serve various applications is software. Developing a faultless software system requires the software system design to be resilient. To make the software design more efficient, it is essential to assess the reusability of the components used. This paper proposes a software reusability prediction model named Flexible Random Fit (FRF) based on aging resilience for a Service Net (SN) software system. The reusability prediction model is developed based on a multilevel optimization technique based on software characteristics such as cohesion, coupling, and complexity. Metrics are obtained from… More >

  • Open Access

    ARTICLE

    Minimizing Total Tardiness in a Two-Machine Flowshop Scheduling Problem with Availability Constraints

    Mohamed Ali Rakrouki1,2,*, Abeer Aljohani1, Nawaf Alharbe1, Abdelaziz Berrais2, Talel Ladhari2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1119-1134, 2023, DOI:10.32604/iasc.2023.028604 - 06 June 2022

    Abstract In this paper, we consider the problem of minimizing the total tardiness in a deterministic two-machine permutation flowshop scheduling problem subject to release dates of jobs and known unavailability periods of machines. The theoretical and practical importance of minimizing tardiness in flowshop scheduling environment has motivated us to investigate and solve this interested two-machine scheduling problem. Methods that solve this important optimality criterion in flowshop environment are mainly heuristics. In fact, despite the -hardness in the strong sense of the studied problem, to the best of our knowledge there are no approximate algorithms (constructive heuristics… More >

  • Open Access

    ARTICLE

    Weed Classification Using Particle Swarm Optimization and Deep Learning Models

    M. Manikandakumar1,*, P. Karthikeyan2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 913-927, 2023, DOI:10.32604/csse.2023.025434 - 01 June 2022

    Abstract Weed is a plant that grows along with nearly all field crops, including rice, wheat, cotton, millets and sugar cane, affecting crop yield and quality. Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity. To address this issue, an efficient weed classification model is proposed with the Deep Convolutional Neural Network (CNN) that implements automatic feature extraction and performs complex feature learning for image classification. Throughout this work, weed images were trained using the proposed CNN model with evolutionary computing… More >

  • Open Access

    ARTICLE

    Maintain Optimal Configurations for Large Configurable Systems Using Multi-Objective Optimization

    Muhammad Abid Jamil1,*, Deafallah Alsadie1, Mohamed K. Nour1, Normi Sham Awang Abu Bakar2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4407-4422, 2022, DOI:10.32604/cmc.2022.029096 - 16 June 2022

    Abstract To improve the maintenance and quality of software product lines, efficient configurations techniques have been proposed. Nevertheless, due to the complexity of derived and configured products in a product line, the configuration process of the software product line (SPL) becomes time-consuming and costly. Each product line consists of a various number of feature models that need to be tested. The different approaches have been presented by Search-based software engineering (SBSE) to resolve the software engineering issues into computational solutions using some metaheuristic approach. Hence, multiobjective evolutionary algorithms help to optimize the configuration process of SPL. More >

  • Open Access

    ARTICLE

    Natural Language Processing with Optimal Deep Learning Based Fake News Classification

    Sara A. Althubiti1, Fayadh Alenezi2, Romany F. Mansour3,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3529-3544, 2022, DOI:10.32604/cmc.2022.028981 - 16 June 2022

    Abstract The recent advancements made in World Wide Web and social networking have eased the spread of fake news among people at a faster rate. At most of the times, the intention of fake news is to misinform the people and make manipulated societal insights. The spread of low-quality news in social networking sites has a negative influence upon people as well as the society. In order to overcome the ever-increasing dissemination of fake news, automated detection models are developed using Artificial Intelligence (AI) and Machine Learning (ML) methods. The latest advancements in Deep Learning (DL)… More >

  • Open Access

    ARTICLE

    Managing Software Testing Technical Debt Using Evolutionary Algorithms

    Muhammad Abid Jamil*, Mohamed K. Nour

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 735-747, 2022, DOI:10.32604/cmc.2022.028386 - 18 May 2022

    Abstract Technical debt (TD) happens when project teams carry out technical decisions in favor of a short-term goal(s) in their projects, whether deliberately or unknowingly. TD must be properly managed to guarantee that its negative implications do not outweigh its advantages. A lot of research has been conducted to show that TD has evolved into a common problem with considerable financial burden. Test technical debt is the technical debt aspect of testing (or test debt). Test debt is a relatively new concept that has piqued the curiosity of the software industry in recent years. In this… More >

Displaying 41-50 on page 5 of 114. Per Page