Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (117)
  • Open Access

    ARTICLE

    Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks

    Akshya Jothi, P. L. K. Priyadarsini*

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1577-1591, 2022, DOI:10.32604/iasc.2022.020974 - 09 October 2021

    Abstract Unmanned Aerial Vehicles (UAVs) are in use for surveillance services in the geographic areas, that are very hard and sometimes not reachable by humans. Nowadays, UAVs are being used as substitutions to manned operations in various applications. The intensive utilization of autonomous UAVs has given rise to many new challenges. One of the vital problems that arise while deploying UAVs in surveillance applications is the Coverage Path Planning(CPP) problem. Given a geographic area, the problem is to find an optimal path/tour for the UAV such that it covers the entire area of interest with minimal… More >

  • Open Access

    ARTICLE

    An Enhanced Memetic Algorithm for Feature Selection in Big Data Analytics with MapReduce

    Umanesan Ramakrishnan1,*, Nandhagopal Nachimuthu2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1547-1559, 2022, DOI:10.32604/iasc.2022.017123 - 09 October 2021

    Abstract Recently, various research fields have begun dealing with massive datasets forseveral functions. The main aim of a feature selection (FS) model is to eliminate noise, repetitive, and unnecessary featuresthat reduce the efficiency of classification. In a limited period, traditional FS models cannot manage massive datasets and filterunnecessary features. It has been discovered from the state-of-the-art literature that metaheuristic algorithms perform better compared to other FS wrapper-based techniques. Common techniques such as the Genetic Algorithm (GA) andParticle Swarm Optimization (PSO) algorithm, however, suffer from slow convergence and local optima problems. Even with new generation algorithms such… More >

  • Open Access

    ARTICLE

    Effectiveness Assessment of the Search-Based Statistical Structural Testing

    Yang Shi*, Xiaoyu Song, Marek Perkowski, Fu Li

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2191-2207, 2022, DOI:10.32604/cmc.2022.018718 - 27 September 2021

    Abstract Search-based statistical structural testing (SBSST) is a promising technique that uses automated search to construct input distributions for statistical structural testing. It has been proved that a simple search algorithm, for example, the hill-climber is able to optimize an input distribution. However, due to the noisy fitness estimation of the minimum triggering probability among all cover elements (Tri-Low-Bound), the existing approach does not show a satisfactory efficiency. Constructing input distributions to satisfy the Tri-Low-Bound criterion requires an extensive computation time. Tri-Low-Bound is considered a strong criterion, and it is demonstrated to sustain a high fault-detecting… More >

  • Open Access

    ARTICLE

    Hybrid Evolutionary Algorithm Based Relevance Feedback Approach for Image Retrieval

    Awais Mahmood1,*, Muhammad Imran2, Aun Irtaza3, Qammar Abbas4, Habib Dhahri1,5, Esam Mohammed Asem Othman1, Arif Jamal Malik6, Aaqif Afzaal Abbasi6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 963-979, 2022, DOI:10.32604/cmc.2022.019291 - 07 September 2021

    Abstract Searching images from the large image databases is one of the potential research areas of multimedia research. The most challenging task for nay CBIR system is to capture the high level semantic of user. The researchers of multimedia domain are trying to fix this issue with the help of Relevance Feedback (RF). However existing RF based approaches needs a number of iteration to fulfill user's requirements. This paper proposed a novel methodology to achieve better results in early iteration to reduce the user interaction with the system. In previous research work it is reported that… More >

  • Open Access

    ARTICLE

    Stock Prediction Based on Technical Indicators Using Deep Learning Model

    Manish Agrawal1, Piyush Kumar Shukla2, Rajit Nair3, Anand Nayyar4,5,*, Mehedi Masud6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 287-304, 2022, DOI:10.32604/cmc.2022.014637 - 07 September 2021

    Abstract Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature. The stock data is usually non-stationary, and attributes are non-correlative to each other. Several traditional Stock Technical Indicators (STIs) may incorrectly predict the stock market trends. To study the stock market characteristics using STIs and make efficient trading decisions, a robust model is built. This paper aims to build up an Evolutionary Deep Learning Model (EDLM) to identify stock trends’ prices by using STIs. The proposed model has implemented the Deep Learning… More >

  • Open Access

    ARTICLE

    New Solution Generation Strategy to Improve Brain Storm Optimization Algorithm for Classification

    Yu Xue1,2,* , Yan Zhao1

    Journal on Internet of Things, Vol.3, No.3, pp. 109-118, 2021, DOI:10.32604/jiot.2021.014980 - 16 December 2021

    Abstract As a new intelligent optimization method, brain storm optimization (BSO) algorithm has been widely concerned for its advantages in solving classical optimization problems. Recently, an evolutionary classification optimization model based on BSO algorithm has been proposed, which proves its effectiveness in solving the classification problem. However, BSO algorithm also has defects. For example, large-scale datasets make the structure of the model complex, which affects its classification performance. In addition, in the process of optimization, the information of the dominant solution cannot be well preserved in BSO, which leads to its limitations in classification performance. Moreover,… More >

  • Open Access

    ARTICLE

    A Reliability Evaluation Method for Intermittent Jointed Rock Slope Based on Evolutionary Support Vector Machine

    Shuai Zheng, An-Nan Jiang*, Kai-Shuai Feng

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 149-166, 2021, DOI:10.32604/cmes.2021.016761 - 24 August 2021

    Abstract The randomness of rock joint development is an important factor in the uncertainty of geotechnical engineering stability. In this study, a method is proposed to evaluate the reliability of intermittent jointed rock slope. The least squares support vector machine (LSSVM) evolved by a bacterial foraging optimization algorithm (BFOA) is used to establish a response surface model to express the mapping relationship between the intermittent joint parameters and the slope safety factor. The training samples are obtained from the numerical calculation based on the joint finite element method during this process. Considering the randomness of the… More >

  • Open Access

    ARTICLE

    An Optimized Convolutional Neural Network Architecture Based on Evolutionary Ensemble Learning

    Qasim M. Zainel1, Murad B. Khorsheed2, Saad Darwish3,*, Amr A. Ahmed4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3813-3828, 2021, DOI:10.32604/cmc.2021.014759 - 24 August 2021

    Abstract Convolutional Neural Networks (CNNs) models succeed in vast domains. CNNs are available in a variety of topologies and sizes. The challenge in this area is to develop the optimal CNN architecture for a particular issue in order to achieve high results by using minimal computational resources to train the architecture. Our proposed framework to automated design is aimed at resolving this problem. The proposed framework is focused on a genetic algorithm that develops a population of CNN models in order to find the architecture that is the best fit. In comparison to the co-authored work,… More >

  • Open Access

    ARTICLE

    A Hybrid Algorithm Based on PSO and GA for Feature Selection

    Yu Xue1,*, Asma Aouari1, Romany F. Mansour2, Shoubao Su3

    Journal of Cyber Security, Vol.3, No.2, pp. 117-124, 2021, DOI:10.32604/jcs.2021.017018 - 02 August 2021

    Abstract One of the main problems of machine learning and data mining is to develop a basic model with a few features, to reduce the algorithms involved in classification’s computational complexity. In this paper, the collection of features has an essential importance in the classification process to be able minimize computational time, which decreases data size and increases the precision and effectiveness of specific machine learning activities. Due to its superiority to conventional optimization methods, several metaheuristics have been used to resolve FS issues. This is why hybrid metaheuristics help increase the search and convergence rate More >

  • Open Access

    ARTICLE

    An Evolutionary Algorithm for Non-Destructive Reverse Engineering of Integrated Circuits

    Huan Zhang1,2, Jiliu Zhou1,2,*, Xi Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 1151-1175, 2021, DOI:10.32604/cmes.2021.015462 - 24 May 2021

    Abstract In hardware Trojan detection technology, destructive reverse engineering can restore an original integrated circuit with the highest accuracy. However, this method has a much higher overhead in terms of time, effort, and cost than bypass detection. This study proposes an algorithm, called mixed-feature gene expression programming, which applies non-destructive reverse engineering to the chip with bypass detection data. It aims to recover the original integrated circuit hardware, or else reveal the unknown circuit design in the chip. More >

Displaying 71-80 on page 8 of 117. Per Page