Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    An Improved Local RBF Collocation Method for 3D Excavation Deformation Based on Direct Method and Mapping Technique

    Cheng Deng1,2, Hui Zheng2,*, Liangyong Gong1, Rongping Zhang1, Mengqi Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2147-2172, 2025, DOI:10.32604/cmes.2025.059750 - 27 January 2025

    Abstract Since the plasticity of soil and the irregular shape of the excavation, the efficiency and stability of the traditional local radial basis function (RBF) collocation method (LRBFCM) are inadequate for analyzing three-dimensional (3D) deformation of deep excavation. In this work, the technique known as the direct method, where the local influence nodes are collocated on a straight line, is introduced to optimize the LRBFCM. The direct method can improve the accuracy of the partial derivative, reduce the size effect caused by the large length-width ratio, and weaken the influence of the shape parameters on the More >

  • Open Access

    ARTICLE

    Shield Excavation Analysis: Ground Settlement & Mechanical Responses in Complex Strata

    Baojun Qin1, Guangwei Zhang1, Wei Zhang2,*

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 341-360, 2024, DOI:10.32604/sdhm.2024.047405 - 15 May 2024

    Abstract This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this construction method impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnel segments. It investigates the impact of shield construction on surface settlement, mechanical characteristics of nearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizing the Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using the ABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force, and… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods

    Duan Zhu1,2, Zhende Zhu1,2, Cong Zhang1,2,*, Lun Dai1,2, Baotian Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2445-2470, 2024, DOI:10.32604/cmes.2023.030847 - 15 December 2023

    Abstract Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especially under complex geological conditions like dense fault areas. These accidents can cause instability and damage to the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcement technology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. This study utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support, and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite… More >

  • Open Access

    ARTICLE

    Predicting the Thickness of an Excavation Damaged Zone around the Roadway Using the DA-RF Hybrid Model

    Yuxin Chen1, Weixun Yong1, Chuanqi Li2, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2507-2526, 2023, DOI:10.32604/cmes.2023.025714 - 09 March 2023

    Abstract After the excavation of the roadway, the original stress balance is destroyed, resulting in the redistribution of stress and the formation of an excavation damaged zone (EDZ) around the roadway. The thickness of EDZ is the key basis for roadway stability discrimination and support structure design, and it is of great engineering significance to accurately predict the thickness of EDZ. Considering the advantages of machine learning (ML) in dealing with high-dimensional, nonlinear problems, a hybrid prediction model based on the random forest (RF) algorithm is developed in this paper. The model used the dragonfly algorithm… More >

  • Open Access

    ARTICLE

    A Hybrid Regional Model for Predicting Ground Deformation Induced by Large-Section Tunnel Excavation

    Shengjun Deng1,2,3,*, Yang He1, Xiaonan Gong2, Jiajin Zhou2, Xiangdong Hu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 495-516, 2023, DOI:10.32604/cmes.2022.020386 - 24 August 2022

    Abstract Due to the large number of finite element mesh generated, it is difficult to use full-scale model to simulate largesection underground engineering, especially considering the coupling effect. A regional model is attempted to achieve this simulation. A variable boundary condition method for hybrid regional model is proposed to realize the numerical simulation of large-section tunnel construction. Accordingly, the balance of initial ground stress under asymmetric boundary conditions achieves by applying boundary conditions step by step with secondary development of Dynaflow scripts, which is the key issue of variable boundary condition method implementation. In this paper, More >

  • Open Access

    ARTICLE

    Stability Analysis of Cross-channel Excavation for Existing Anchor Removal Project in Subway Construction

    Li Bin1,2,3, Fang Hongyuan1,2,3,*, He Wei4, Sun Bin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 57-69, 2017, DOI:10.3970/cmes.2017.113.054

    Abstract The cutter head will be stuck when the shield machine pass through the area existing anchor left by foundation construction of surrounding high-rise building. Subsurface excavation method is an efficient way to remove the existed anchor. In this paper, a three-dimensional finite element model is developed to study stability of cross-channel excavation. The time-spatial effects of arch crown settlement, intrados uplift and side wall horizontal convergence are analyzed according to different excavation size, lining thickness and lining order. The results show that the excavation size is the main factor to control the deformation of the More >

  • Open Access

    ARTICLE

    Dynamic Response of Borehole in Poroelastic Medium with Disturbed Zone

    W. Kaewjuea1, T. Senjuntichai2, R.K.N.D. Rajapakse3

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.3, pp. 207-228, 2014, DOI:10.3970/cmes.2014.101.207

    Abstract Dynamic response of an infinite cylindrical borehole in a poroelastic medium with an excavation disturbed zone is investigated in this paper. The borehole is subjected to axisymmetric time-harmonic loads and fluid sources applied to its surface, which is either fully permeable or impermeable. The governing equations based on Biot’s poroelastodynamics theory are solved by using two scalar potentials and two vector potentials. The general solutions are then derived through the application of Fourier integral transform with respect to the vertical coordinate. An exact stiffness matrix scheme is established from the derived general solutions to include More >

  • Open Access

    ARTICLE

    Impact of Overhead Excavation on an Existing Shield Tunnel: Field Monitoring and a Full 3D Finite Element Analysis

    F. Wang1,2, D.M. Zhang1,2,3, H.H. Zhu4, H.W. Huang1,2, J.H. Yin5

    CMC-Computers, Materials & Continua, Vol.34, No.1, pp. 63-81, 2013, DOI:10.3970/cmc.2013.034.063

    Abstract This paper studies the impact of overhead excavation on an existing tunnel through both field monitoring and a full 3D numerical model. It is found that the excavation induced longitudinal heave of the tunnel is uneven with maximum heave occurring below the excavation center. Even at the same cross section, the excavation induced heave is not uniform with the most significant heave occurring at the tunnel crown. The bending moments of the tunnel lining is decreased due to the overhead excavation. The axial forces of the tunnel lining generally decrease except at the tunnel invert. More >

  • Open Access

    ABSTRACT

    Modeling the effect of earthquake, excavation and bolt reinforcement with extended DDA of meshless interpolations

    Yongzheng Ma, Hong Zheng

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.1, pp. 7-8, 2011, DOI:10.3970/icces.2011.019.007

    Abstract The traditional Discontinuous Deformation Analysis (DDA) method, like other Discrete Element Methods, is created to model the discrete block system. The extended DDA method based on meshless interpolations means utilizing meshless interpolations, usually the Moving Least-Squares interpolations, to present block displacement field. In the new extensions here, the effects of earthquake, excavation and bolt reinforcement on the assemblages of large blocks are modeled: for modeling earthquake, the initial acceleration value from earthquake at certain DDA time step can be interpolated from the earthquake acceleration vs. time curve; the modeling of excavation is by reversing in-situ More >

Displaying 1-10 on page 1 of 9. Per Page