Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (371)
  • Open Access


    Mechanical Stretch-Induced Changes in Cell Morphology and mRNA Expression of Tendon/Ligament-Associated Genes in Rat Bone-Marrow Mesenchymal Stem Cells

    Guanbin Song∗,†,‡, Qing Luo*, Baiyao Xu*, Yang Ju

    Molecular & Cellular Biomechanics, Vol.7, No.3, pp. 165-174, 2010, DOI:10.3970/mcb.2010.007.165

    Abstract It has been demonstrated that mechanical stimulation plays a vital role in regulating the proliferation and differentiation of stem cells. However, little is known about the effects of mechanical stress on tendon/ligament development from mesenchymal stem cells (MSCs). Here, using a custom-made cell-stretching device, we studied the effects of mechanical stretching on the cell morphology and mRNA expression of several key genes modulating tendon/ligament genesis. We demonstrate that bone-marrow-derived rat MSCs (rMSCs), when subjected to cyclic uniaxial stretching, express obvious detectable mRNAs for tenascin C and scleraxis, a unique maker of tendon/ligament formation, and significantly More >

  • Open Access


    Hypertrophic Gene Expression Induced by Chronic Stretch of Excised Mouse Heart Muscle

    Anna M. Raskin∗,†, Masahiko Hoshijima, Eric Swanson, Andrew D. McCulloch*, Jeffrey H. Omens∗,†,‡

    Molecular & Cellular Biomechanics, Vol.6, No.3, pp. 145-160, 2009, DOI:10.3970/mcb.2009.006.145

    Abstract Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse… More >

  • Open Access


    Specific Expression of E--Tmod (Tmod1) in Horizontal Cells: Implications in Neuronal Cell Mechanics and Glaucomatous Retina

    Weijuan Yao*, Lanping Amy Sung

    Molecular & Cellular Biomechanics, Vol.6, No.1, pp. 71-82, 2009, DOI:10.3970/mcb.2009.006.071

    Abstract Erythrocyte tropomodulin (E-Tmod) is a tropomyosin-binding and actin capping protein at the point end of the filaments. It is part of a molecular ruler that plays an important role in generating short actin protofilaments critical for the integrity of the cell membrane. Here, with the use of \textit {E-Tmod+/lacZ} mice, we demonstrated a specific E-Tmod expression in horizontal cells (HCs) in the retina, and analyzed the stress-strain relationship of HCs, vertically oriented neurons, and retinal ganglial cells (RGC) under normal and high intraocular pressure (IOP). Since their dendrites are oriented laterally in a plane and… More >

  • Open Access


    Role of Shear Stress Direction in Endothelial Mechanotransduction

    Shu Chien*

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 1-8, 2008, DOI:10.3970/mcb.2008.005.001

    Abstract Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward More >

  • Open Access


    Focal Adhesion Kinase Signaling Controls Cyclic Tensile Strain Enhanced Collagen I-Induced Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Donald F. Ward Jr.*, William A. Williams*, Nicole E. Schapiro*, Samuel R. Christy*, Genevieve L. Weber*, Megan Salt, Robert F. Klees*, Adele Boskey, George E. Plopper ∗,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 177-188, 2007, DOI:10.3970/mcb.2007.004.177

    Abstract Focal adhesion kinase (FAK) is a key integrator of integrin-mediated signals from the extracellular matrix to the cytoskeleton and downstream signaling molecules. FAK is activated by phosphorylation at specific tyrosine residues, which then stimulate downstream signaling including the ERK1/2 pathway, leading to a variety of cellular responses. In this study, we examined the effects of FAK point mutations at tyrosine residues (Y397, Y925, Y861, and Y576/7) on osteogenic differentiation of human mesenchymal stem cells exposed to collagen I and cyclic tensile strain. Our results demonstrate that FAK signaling emanating from Y397, Y925, and to a More >

  • Open Access


    Adhesive Force of Human Hepatoma HepG2 Cells to Endothelial Cells and Expression of E-Selectin

    Guanbin Song∗,†, Toshiro Ohashi, Naoya Sakamoto, Masaaki Sato

    Molecular & Cellular Biomechanics, Vol.3, No.2, pp. 61-68, 2006, DOI:10.3970/mcb.2006.003.061

    Abstract Expression of adhesion molecules may play an important role in the interaction of tumor cells with vascular endothelial cells during tumor invasion and metastasis. In this study, the adhesive force of human hepatoma HepG2 cells to human umbilical vein endothelial cells (HUVECs) was investigated using a micropipette aspiration technique. Expression of an adhesion molecule, E-selectin, was also observed by immunofluorescence microscopy. In particular, the adhesive force after stimulation of HUVECs with recombinant human interleukin-1β (rhIL-1β) was examined. The results demonstrated that the adhesive force of HepG2 cells to stimulated HUVECs is significantly higher than that More >

  • Open Access


    Gender-Specific Multi-Task Micro-Expression Recognition Using Pyramid CGBP-TOP Feature

    Chunlong Hu1,*, Jianjun Chen1, Xin Zuo1, Haitao Zou1, Xing Deng1, Yucheng Shu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 547-559, 2019, DOI:10.31614/cmes.2019.04032

    Abstract Micro-expression recognition has attracted growing research interests in the field of compute vision. However, micro-expression usually lasts a few seconds, thus it is difficult to detect. This paper presents a new framework to recognize micro-expression using pyramid histogram of Centralized Gabor Binary Pattern from Three Orthogonal Panels (CGBP-TOP) which is an extension of Local Gabor Binary Pattern from Three Orthogonal Panels feature. CGBP-TOP performs spatial and temporal analysis to capture the local facial characteristics of micro-expression image sequences. In order to keep more local information of the face, CGBP-TOP is extracted based on pyramid sub-regions… More >

  • Open Access


    Thermal Expansion Behavior of Single Helical Clearance Structure

    Cao Guohua1, Zhu Zhencai1, Peng Weihong2, Wang Jinjie1, Liu Zhi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.2, pp. 119-138, 2013, DOI:10.3970/cmes.2013.094.119

    Abstract The single helical structure is twisted by surrounding helical units with clearance or not between two layers. In order to master the thermal expansion behavior, the theory has been developed for the analysis of these helical structures. The previously deduced linear expressions of thermal expansion coefficients for the gapless structure model (GM) is used and the analytical method is applied to the clearance structure model (CM) and clearance-gapless structure model(CGM) under two boundary conditions. For further evaluating the analytical expressions of two models, the finite element models of the single helical structure surrounding by helical… More >

  • Open Access


    Thermal Expansion Characteristic of Prestressed Single Helical Structure

    Cao Guohua, Li Kai, Zhu Zhencai, Peng Weihong, Mao Xianbiao

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 403-424, 2012, DOI:10.3970/cmes.2012.083.403

    Abstract In order to master the geometric and mechanical behavior of helical structure under complicated condition such as the hoisting rope in mine shaft and the transmitting cable in electric power, the thermal expansion characteristic of single helical structure is systematically investigated under temperature effect in different layer. Linearly explicit expressions of axial strain and increment of helical angle for the helical unit of the ith layer are developed. Based on theory of curve by Love and theory of wire rope by Costello, the linearly explicit expressions of tension, torsion and bending moment of the helical… More >

  • Open Access


    Expression Preserved Face Privacy Protection Based on Multi-mode Discriminant Analysis

    Xiang Wang1, *, Chen Xiong1, Qingqi Pei1, Youyang Qu2

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 107-121, 2018, DOI:10.32604/cmc.2018.03675

    Abstract Most visual privacy protection methods only hide the identity information of the face images, but the expression, behavior and some other information, which are of great significant in the live broadcast and other scenarios, are also destroyed by the privacy protection process. To this end, this paper introduces a method to remove the identity information while preserving the expression information by performing multi-mode discriminant analysis on the images normalized with AAM algorithm. The face images are decomposed into mutually orthogonal subspaces corresponding to face attributes such as gender, race and expression, each of which owns More >

Displaying 361-370 on page 37 of 371. Per Page