Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (211)
  • Open Access

    ARTICLE

    Finite Element modeling of Nomex® honeycomb cores : Failure and effective elastic properties

    L. Gornet1, S. Marguet2, G. Marckmann3

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 63-74, 2006, DOI:10.3970/cmc.2006.004.063

    Abstract The purpose of the present study is to determine the components of the effective elasticity tensor and the failure properties of Nomex® honeycomb cores. In order to carry out this study, the NidaCore software, a program dedicated to Nomex®Cores predictions, has been developed using the Finite Element tool Cast3M-CEA. This software is based on periodic homogenization techniques and on the modelling of structural instability phenomena. The homogenization of the periodic microstructure is realized thanks to a strain energy approach. It assumes the mechanical equivalence between the microstructures of a RVE and a similar homogeneous macroscopic volume.… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Elastic Behaviour and Failure Processes in Heterogeneous Material

    Lingfei Gao1, Xiaoping Zheng1,2, Zhenhan Yao1

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 25-36, 2006, DOI:10.3970/cmc.2007.003.025

    Abstract A general numerical approach is developed to model the elastic behaviours and failure processes of heterogeneous materials. The heterogeneous material body is assumed composed of a large number of convex polygon lattices with different phases. These phases are locally isotropic and elastic-brittle with the different lattices displaying variable material parameters and a Weibull-type statistical distribution. When the effective strain exceeds a local fracture criterion, the full lattice exhibits failure uniformly, and this is modelled by assuming a very small Young modulus value. An auto-select loading method is employed to model the failure process. The proposed More >

  • Open Access

    ARTICLE

    A Silent Boundary Scheme with the Material Point Method for Dynamic Analyses

    Luming Shen1, Zhen Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 305-320, 2005, DOI:10.3970/cmes.2005.007.305

    Abstract To simulate the dynamic responses involving different material phases in a finite computational domain without discretizing the whole problem domain, a silent boundary scheme is proposed within the framework of the material point method (MPM) that is an extension from Computational Fluid Dynamics to Computational Solid Dynamics. Because the MPM does not employ fixed mesh connectivity, a robust spatial discretization procedure in the moving domain of influence could be designed by applying viscous damping forces along the computational boundary. To establish a simple interface between the discretization procedures with and without fixed mesh connectivity, a More >

  • Open Access

    ARTICLE

    A multiscale approach for the micropolar continuum model

    Hiroshi Kadowaki1, Wing Kam Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 269-282, 2005, DOI:10.3970/cmes.2005.007.269

    Abstract A method to derive governing equations and elastic-plastic constitutive relations for the micropolar continuum model is proposed. Averaging procedures are operated over a surrounding sub-domain for each material point to bridge a discrete microstructure to a macro continuum model. Material parameters are determined by these procedures. The size of the sub-domain represents the material intrinsic length scale, and it is passed into the macroscopic governing equation so that the numerical solution can be regularized for analyses of failure phenomena. An application to a simple granular material model is presented. More >

  • Open Access

    ARTICLE

    A Cell Method (CM) Code for Modeling the Pullout Test Step-wise

    E. Ferretti 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.5, pp. 453-476, 2004, DOI:10.3970/cmes.2004.006.453

    Abstract The Cell Method (CM) code with automatic remeshing for crack propagation analysis [Ferretti (2003)] is here used for modeling the pullout test. Particular emphasis is given to the analysis in the Mohr-Coulomb plane, since previous numerical models were not decisive in describing failure mechanism in pullout tests. The interpretations of experimental and analytical studies vary widely, and none of the existing explanations offer a complete description of the progressive failure of the concrete medium [Yener (1994)]. Nor do most existing interpretations appear to be totally compatible with the experimental evidence. Analysis of the failure mechanism… More >

  • Open Access

    ARTICLE

    The Effect of Fiber Diameter on the Compressive Strength of Composites - A 3D Finite Element Based Study

    Ch,ra S. Yerramalli1, Anthony M. Waas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.1, pp. 1-16, 2004, DOI:10.3970/cmes.2004.006.001

    Abstract Results from a 3D finite element based study of the compression response of unidirectional fiber reinforced polymer matrix composites (FRPC) are presented in this paper. The micromechanics based study was used to simulate the compressive response of glass and carbon fiber reinforced polymer matrix composites, with a view to understanding the effect of fiber diameter on compression strength. Results from the modeling and simulation indicate the presence of a complex three dimensional stress state in the matrix of the FRPC. Results from the simulation highlight the role of fiber diameter on the compressive response of More >

  • Open Access

    ARTICLE

    Multi-Inclusion Unit Cell Studies of Reinforcement Stresses and Particle Failure in Discontinuously Reinforced Ductile Matrix Composites

    H.J. Bohm¨ 1, W. Han1,2, A. Eckschlager1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.1, pp. 5-20, 2004, DOI:10.3970/cmes.2004.005.005

    Abstract Three-dimensional periodic micromechanical models are used for studying the mechanical behavior of discontinuously reinforced ductile matrix composites. The models are based on unit cells that contain a number of randomly positioned and, where applicable, randomly oriented spherical, spheroidal or cylindrical reinforcements. The Finite Element method is used to resolve the microscale stress and strain fields and to predict the homogenized responses under overall uniaxial tensile loading in the elastic and elastoplastic regimes. Periodicity boundary conditions are employed in the analyses.\\ The main emphasis of the contribution is put on studying the microscale stresses in the More >

  • Open Access

    ARTICLE

    Stress Concentrations Caused by Embedded Optical Fiber Sensors in Composite Laminates

    Kunigal Shivakumar1, Anil Bhargava2

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 173-190, 2004, DOI:10.3970/cmc.2004.001.173

    Abstract The fiber optic sensor (FOS) embedded perpendicular to reinforcing fibers causes an `Eye' shaped defect. The length is about 16 times fiber optic radius (RFos) and height is about 2RFos. The eye contains fiber optics in the center surrounded by an elongated resin pocket. Embedding FOS causes geometric distortion of the reinforcing fiber over a height equal to 6 to 8 RFos. This defect causes severe stress concentration at the root of the resin pocket, the interface (in the composite) between the optical fiber and the composite, and at 90° to load direction in the composite. The… More >

  • Open Access

    ARTICLE

    Crack-Path Analysis for Brittle and Non-Brittle Cracks: A Cell Method Approach

    E. Ferretti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 227-244, 2004, DOI:10.3970/cmes.2004.006.227

    Abstract Defining the crack path in brittle and non-brittle crack is not easy, due to several unknowns. If the direction of crack propagation can be computed by means of one of the existing criteria, it is not known whether this direction will remain constant during crack propagation. A crack initiation leads to an enhanced stress field at crack tip. During propagation, the enhanced tip stress field propagates into the solid, locally interacting with the pre-existing stress field. This interaction can lead to modifications of the propagation direction, depending on the domain and crack geometry. Moreover, trajectory… More >

  • Open Access

    ARTICLE

    Simulations of Scuffing Based on a Dynamic System Model

    Yuanzhong Hu1, Yuchuan Liu, Hui Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.4, pp. 447-454, 2002, DOI:10.3970/cmes.2002.003.447

    Abstract Scuffing, a major cause of failure in automobile engines, is considered as a dynamic process in this study. Local adhesions may occur randomly in lubricated contacts due to the existence of asperity contact and breakdown of lubricating films. Scuffing would take place if the local events develop rapidly into a large-scale plastic deformation and catastrophic failure. A system dynamic model established in the present paper allows one to predict dynamic behavior of a tribological system through numerical solutions of a group of differential equations. Results show that a transition to adhesion begins when the surface More >

Displaying 201-210 on page 21 of 211. Per Page