Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (213)
  • Open Access

    ARTICLE

    Risk Factors for Abuse in Children with Congenital Heart Disease Presenting at a Pediatric Tertiary Care Hospital

    Kristi K. Westphaln1,2,*, Karen Kay Imagawa2,3, Lorena Espinosa Smith1,4, Julia Srivastava5, Nancy A. Pike1,5

    Congenital Heart Disease, Vol.18, No.6, pp. 657-670, 2023, DOI:10.32604/chd.2023.044179 - 19 January 2024

    Abstract Background: Congenital heart disease (CHD) is a chronic medical condition often diagnosed at birth and requires surgical intervention, multiple hospitalizations, and lifelong care. This can put significant stress on the family, leading to altered maternal mental health, bonding and attachment issues, and the potential for child abuse. The purpose of this study is to explore the characteristics of a sample of young children with CHD who experienced hospitalization with concurrent concern for child abuse in a free-standing pediatric tertiary care hospital. Methods: Electronic medical records were reviewed for children aged 0–5 years old who were… More >

  • Open Access

    PROCEEDINGS

    Fragile Points Method for Modeling Complex Structural Failure

    Mingjing Li1,*, Leiting Dong1, Satya N. Atluri2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09689

    Abstract The Fragile Points Method (FPM) is a discontinuous meshless method based on the Galerkin weak form [1]. In the FPM, the problem domain is discretized by spatial points and subdomains, and the displacement trial function of each subdomain is derived based on the points within the support domain. For this reason, the FPM doesn’t suffer from the mesh distortion and is suitable to model complex structural deformations. Furthermore, similar to the discontinuous Galerkin finite element method, the displacement trial functions used in the FPM is piece-wise continuous, and the numerical flux is introduced across each… More >

  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the… More >

  • Open Access

    ARTICLE

    Identification of High-Risk Scenarios for Cascading Failures in New Energy Power Grids Based on Deep Embedding Clustering Algorithms

    Xueting Cheng1, Ziqi Zhang2,*, Yueshuang Bao1, Huiping Zheng1

    Energy Engineering, Vol.120, No.11, pp. 2517-2529, 2023, DOI:10.32604/ee.2023.042633 - 31 October 2023

    Abstract At present, the proportion of new energy in the power grid is increasing, and the random fluctuations in power output increase the risk of cascading failures in the power grid. In this paper, we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering (DEC) algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids. First, considering the real-time operation status and system structure of new energy power grids, the scenario cascading failure risk More >

  • Open Access

    PROCEEDINGS

    Analytical Mixed Mode Partition Method for One Dimensional Fracture of Composite DCBs

    Michele Straface1, Wu Xu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09657

    Abstract Fracture analysis is a problem playing a fundamental role in the fields of Aerospace Mechanics and Structural Mechanics. The paper deals with the analysis of the most essential among the fracture problems: the one-dimensional crack in a double cantilever beam. The report presents a reliable analytical method to correctly partition the energy release rates into pure fracture modes, appliable to both isotropic and composite beams with clearly known mechanical properties, subject to shearing or bending loads. The adopted strategy is based on the Timoshenko’s kinematic model and exploits the theoretical definition of the I and More >

  • Open Access

    PROCEEDINGS

    Peridynamic Analysis on Failure of Cantilever Beam Subjected to a Concentrated Force and Uniform Distributed Traction

    Zeyuan Zhou1, Ming Yu1, Zaixing Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09135

    Abstract Peridynamics (PD) is a reformulation of the classical continuum mechanics. Its core consists in that a weighted integral of relative displacement over a spatial domain is used instead of the spatial derivative of displacement in governing equations of deformation. Based on an improved technique of exerting traction on boundary surface, an improved peridynamic motion equation has been proposed within the framework of the peridynamic(PD) theory. It is more natural and easier to deal with boundary conditions for the elastic deformation and fracture analysis. Under the enhancement effect in the constructed transfer functions of boundary traction,… More >

  • Open Access

    PROCEEDINGS

    Progressive Failure Analysis of Composite Laminates Subjected to Transverse Loading with Augmented Finite Element Method

    Shu Li1,*, Yan Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09078

    Abstract In this paper, two-dimensional (2D) orthotropic augmented finite element method (A-FEM) is applied to account for progressive failure of composite laminates under transverse loading, which considers all major cracking modes (delamination, fiber kinking/rupture matrix cracking). High-fidelity simulations of different stacking composite laminates under transverse loading are implemented. Both predicted load−deflection curves and damage evolution are in good agreement with that of experimental results, which demonstrates the numerical capability of A-FEM. In addition, the influence of stacking sequence on the failure mechanism is also studied by predicted damage evolution of laminates with different stacking sequence. Results More >

  • Open Access

    PROCEEDINGS

    A Double-Phase-Field Model for the Cohesive Failure Modelling in Laminated Composite Materials

    Haibo Su1, Liang Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09611

    Abstract This work presents a novel double-phase-field formulation to characterize the distinct damage mechanisms and the mixed-mode cohesive fracture behaviors in fiber-reinforced composites (FRC). A hybrid phase field formulation is first proposed to derive the phase field and stress through distinct energy functionals. Then, the phase field degradation function and material damaged stiffness are properly defined based on the unique failure mechanisms, which enable the derivation of the embedded Hashin failure criteria for fiber and matrix failures in FRC respectively. Furthermore, the mixed-model cohesive law with linear softening is analytically derived within the phase field framework More >

  • Open Access

    PROCEEDINGS

    A Phase-Field Framework for Modeling Cohesive Fracture and Multiple Crack Evolutions in Fiber-Reinforced Composites

    Liang Wang1,*, Haibo Su1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09107

    Abstract This work proposes a novel multi-phase-field formulation to characterize the distinct damage mechanisms and quasi-brittle fracture behaviors in FRC. The phase field driving forces for each failure mechanisms are first defined based on an anisotropic energy split scheme. Then, the PF degradation functions pertinent to each failure mode are properly defined with corresponding material fracture quantities, which enables the derivation of embedded Hashin failure criteria for fiber- and matrix failures respectively. Furthermore, the material damaged stiffness is redefined within the anisotropic CDM framework, and a linear CZM is mathematically derived for each of the typical More >

  • Open Access

    PROCEEDINGS

    The Correlation Between the Cyclic Oxidation Behavior of EB-PVD TBC and Refurbishment Process

    Pan Li1, Xiaochao Jin1, Pin Lv1, Xueling Fan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010540

    Abstract Refurbishment of thermal barrier coating (TBC) has become a valuable technique to prolong the service life of high-temperature components. In this work, the effect of refurbishment process on the oxidation behaviors of TBC was investigated. Before recoating, the soft chemical stripping method was used to remove TBC from DD6 single-crystal superalloy. The results showed that a certain amount of IDZ layer with Cr-rich would be retained in the DD6 superalloy substrate after coating removal. The characteristics of the β phases change from the elongated grain shapes and a high aspect ratio in the ordinary specimens… More >

Displaying 31-40 on page 4 of 213. Per Page