Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (249)
  • Open Access

    ARTICLE

    Hybrid Evolutionary Algorithm Based Relevance Feedback Approach for Image Retrieval

    Awais Mahmood1,*, Muhammad Imran2, Aun Irtaza3, Qammar Abbas4, Habib Dhahri1,5, Esam Mohammed Asem Othman1, Arif Jamal Malik6, Aaqif Afzaal Abbasi6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 963-979, 2022, DOI:10.32604/cmc.2022.019291

    Abstract Searching images from the large image databases is one of the potential research areas of multimedia research. The most challenging task for nay CBIR system is to capture the high level semantic of user. The researchers of multimedia domain are trying to fix this issue with the help of Relevance Feedback (RF). However existing RF based approaches needs a number of iteration to fulfill user's requirements. This paper proposed a novel methodology to achieve better results in early iteration to reduce the user interaction with the system. In previous research work it is reported that… More >

  • Open Access

    ARTICLE

    Human Gait Recognition: A Deep Learning and Best Feature Selection Framework

    Asif Mehmood1, Muhammad Attique Khan2, Usman Tariq3, Chang-Won Jeong4, Yunyoung Nam5,*, Reham R. Mostafa6, Amira ElZeiny7

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 343-360, 2022, DOI:10.32604/cmc.2022.019250

    Abstract Background—Human Gait Recognition (HGR) is an approach based on biometric and is being widely used for surveillance. HGR is adopted by researchers for the past several decades. Several factors are there that affect the system performance such as the walking variation due to clothes, a person carrying some luggage, variations in the view angle. Proposed—In this work, a new method is introduced to overcome different problems of HGR. A hybrid method is proposed or efficient HGR using deep learning and selection of best features. Four major steps are involved in this work-preprocessing of the video frames,… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Network Intrusion Detection

    Mavra Mehmood1, Talha Javed2, Jamel Nebhen3, Sidra Abbas2,*, Rabia Abid1, Giridhar Reddy Bojja4, Muhammad Rizwan1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 91-107, 2022, DOI:10.32604/cmc.2022.019127

    Abstract Due to the widespread use of the internet and smart devices, various attacks like intrusion, zero-day, Malware, and security breaches are a constant threat to any organization's network infrastructure. Thus, a Network Intrusion Detection System (NIDS) is required to detect attacks in network traffic. This paper proposes a new hybrid method for intrusion detection and attack categorization. The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization. In the first step, the dataset is preprocessed through the data transformation technique and min-max method. Secondly, the More >

  • Open Access

    ARTICLE

    A Hybrid Feature Selection Framework for Predicting Students Performance

    Maryam Zaffar1,2,*, Manzoor Ahmed Hashmani1, Raja Habib2, KS Quraishi3, Muhammad Irfan4, Samar Alqhtani5, Mohammed Hamdi5

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1893-1920, 2022, DOI:10.32604/cmc.2022.018295

    Abstract Student performance prediction helps the educational stakeholders to take proactive decisions and make interventions, for the improvement of quality of education and to meet the dynamic needs of society. The selection of features for student's performance prediction not only plays significant role in increasing prediction accuracy, but also helps in building the strategic plans for the improvement of students’ academic performance. There are different feature selection algorithms for predicting the performance of students, however the studies reported in the literature claim that there are different pros and cons of existing feature selection algorithms in selection… More >

  • Open Access

    ARTICLE

    An Effective Feature Generation and Selection Approach for Lymph Disease Recognition

    Sunil Kr. Jha1,*, Zulfiqar Ahmad2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 567-594, 2021, DOI:10.32604/cmes.2021.016817

    Abstract Health care data mining is noteworthy in disease diagnosis and recognition procedures. There exist several potentials to further improve the performance of machine learning based-classification methods in healthcare data analysis. The selection of a substantial subset of features is one of the feasible approaches to achieve improved recognition results of classification methods in disease diagnosis prediction. In the present study, a novel combined approach of feature generation using latent semantic analysis (LSA) and selection using ranker search (RAS) has been proposed to improve the performance of classification methods in lymph disease diagnosis prediction. The performance… More >

  • Open Access

    ARTICLE

    Swarming Behavior of Harris Hawks Optimizer for Arabic Opinion Mining

    Diaa Salam Abd Elminaam1,2,*, Nabil Neggaz3, Ibrahim Abdulatief Ahmed4,5, Ahmed El Sawy Abouelyazed4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4129-4149, 2021, DOI:10.32604/cmc.2021.019047

    Abstract At present, the immense development of social networks allows generating a significant amount of textual data, which has facilitated researchers to explore the field of opinion mining. In addition, the processing of textual opinions based on the term frequency-inverse document frequency method gives rise to a dimensionality problem. This study aims to detect the nature of opinions in the Arabic language employing a swarm intelligence (SI)-based algorithm, Harris hawks algorithm, to select the most relevant terms. The experimental study has been tested on two datasets: Arabic Jordanian General Tweets and Opinion Corpus for Arabic. In More >

  • Open Access

    ARTICLE

    Medical Feature Selection Approach Based on Generalized Normal Distribution Algorithm

    Mohamed Abdel-Basset1, Reda Mohamed1, Ripon K. Chakrabortty2, Michael J. Ryan2, Yunyoung Nam3,*, Mohamed Abouhawwash4,5

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 2883-2901, 2021, DOI:10.32604/cmc.2021.017854

    Abstract This paper proposes a new pre-processing technique to separate the most effective features from those that might deteriorate the performance of the machine learning classifiers in terms of computational costs and classification accuracy because of their irrelevance, redundancy, or less information; this pre-processing process is often known as feature selection. This technique is based on adopting a new optimization algorithm known as generalized normal distribution optimization (GNDO) supported by the conversion of the normal distribution to a binary one using the arctangent transfer function to convert the continuous values into binary values. Further, a novel… More >

  • Open Access

    ARTICLE

    Bayesian Rule Modeling for Interpretable Mortality Classification of COVID-19 Patients

    Jiyoung Yun, Mainak Basak, Myung-Mook Han*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 2827-2843, 2021, DOI:10.32604/cmc.2021.017266

    Abstract Coronavirus disease 2019 (COVID-19) has been termed a “Pandemic Disease” that has infected many people and caused many deaths on a nearly unprecedented level. As more people are infected each day, it continues to pose a serious threat to humanity worldwide. As a result, healthcare systems around the world are facing a shortage of medical space such as wards and sickbeds. In most cases, healthy people experience tolerable symptoms if they are infected. However, in other cases, patients may suffer severe symptoms and require treatment in an intensive care unit. Thus, hospitals should select patients… More >

  • Open Access

    ARTICLE

    Hybrid Sooty Tern Optimization and Differential Evolution for Feature Selection

    Heming Jia1,2,*, Yao Li2, Kangjian Sun2, Ning Cao1, Helen Min Zhou3

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 321-335, 2021, DOI:10.32604/csse.2021.017536

    Abstract In this paper, a hybrid model based on sooty tern optimization algorithm (STOA) is proposed to optimize the parameters of the support vector machine (SVM) and identify the best feature sets simultaneously. Feature selection is an essential process of data preprocessing, and it aims to find the most relevant subset of features. In recent years, it has been applied in many practical domains of intelligent systems. The application of SVM in many fields has proved its effectiveness in classification tasks of various types. Its performance is mainly determined by the kernel type and its parameters.… More >

  • Open Access

    REVIEW

    Review of Computational Techniques for the Analysis of Abnormal Patterns of ECG Signal Provoked by Cardiac Disease

    Revathi Jothiramalingam1, Anitha Jude2, Duraisamy Jude Hemanth2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 875-906, 2021, DOI:10.32604/cmes.2021.016485

    Abstract The 12-lead ECG aids in the diagnosis of myocardial infarction and is helpful in the prediction of cardiovascular disease complications. It does, though, have certain drawbacks. For other electrocardiographic anomalies such as Left Bundle Branch Block and Left Ventricular Hypertrophy syndrome, the ECG signal with Myocardial Infarction is difficult to interpret. These diseases cause variations in the ST portion of the ECG signal. It reduces the clarity of ECG signals, making it more difficult to diagnose these diseases. As a result, the specialist is misled into making an erroneous diagnosis by using the incorrect therapeutic More >

Displaying 201-210 on page 21 of 249. Per Page