Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Privacy Data Management Mechanism Based on Blockchain and Federated Learning

    Mingsen Mo1, Shan Ji2, Xiaowan Wang3,*, Ghulam Mohiuddin4, Yongjun Ren1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 37-53, 2023, DOI:10.32604/cmc.2023.028843 - 22 September 2022

    Abstract Due to the extensive use of various intelligent terminals and the popularity of network social tools, a large amount of data in the field of medical emerged. How to manage these massive data safely and reliably has become an important challenge for the medical network community. This paper proposes a data management framework of medical network community based on Consortium Blockchain (CB) and Federated learning (FL), which realizes the data security sharing between medical institutions and research institutions. Under this framework, the data security sharing mechanism of medical network community based on smart contract and the… More >

  • Open Access

    ARTICLE

    Optimal and Effective Resource Management in Edge Computing

    Darpan Majumder1,*, S. Mohan Kumar2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1201-1217, 2023, DOI:10.32604/csse.2023.024868 - 15 June 2022

    Abstract Edge computing is a cloud computing extension where physical computers are installed closer to the device to minimize latency. The task of edge data centers is to include a growing abundance of applications with a small capability in comparison to conventional data centers. Under this framework, Federated Learning was suggested to offer distributed data training strategies by the coordination of many mobile devices for the training of a popular Artificial Intelligence (AI) model without actually revealing the underlying data, which is significantly enhanced in terms of privacy. Federated learning (FL) is a recently developed decentralized… More >

  • Open Access

    ARTICLE

    Evidence-Based Federated Learning for Set-Valued Classification of Industrial IoT DDos Attack Traffic

    Jiale Cheng1, Zilong Jin1,2,*

    Journal on Internet of Things, Vol.4, No.3, pp. 183-195, 2022, DOI:10.32604/jiot.2022.042054 - 12 June 2023

    Abstract A novel Federated learning classifier is proposed using the Dempster-Shafer (DS) theory for the set-valued classification of industrial IoT Distributed Denial of Service (DDoS) attack traffic. The proposed classifier, referred to as the evidence-based federated learning classifier, employs convolution and pooling layers to extract high-dimensional features of Distributed Denial of Service (DDoS) traffic from the local data of private industrial clients. The characteristics obtained from the various participants are transformed into mass functions and amalgamated utilizing Dempster’s rule within the DS layer, situated on the federated server. Lastly, the set value classification task of attack More >

  • Open Access

    ARTICLE

    An Intrusion Detection Scheme Based on Federated Learning and Self-Attention Fusion Convolutional Neural Network for IoT

    Jie Deng1, Ran Guo2, Zilong Jin1,3,*

    Journal on Internet of Things, Vol.4, No.3, pp. 141-153, 2022, DOI:10.32604/jiot.2022.038914 - 12 June 2023

    Abstract Traditional based deep learning intrusion detection methods face problems such as insufficient cloud storage, data privacy leaks, high communication costs, unsatisfactory detection rates, and false positive rate. To address existing issues in intrusion detection, this paper presents a novel approach called CS-FL, which combines Federated Learning and a Self-Attention Fusion Convolutional Neural Network. Federated Learning is a new distributed computing model that enables individual training of client data without uploading local data to a central server. at the same time, local training results are uploaded and integrated across all participating clients to produce a global… More >

  • Open Access

    ARTICLE

    Application of Federated Learning Algorithm Based on K-Means in Electric Power Data

    Weimin He, Lei Zhao*

    Journal of New Media, Vol.4, No.4, pp. 191-203, 2022, DOI:10.32604/jnm.2022.032994 - 12 December 2022

    Abstract Accurate electricity forecasting is the key basis for guiding the power sector to arrange operation plans and guaranteeing the profitability of electric power companies. However, with the increasing demand of enterprises and departments for data security, the phenomenon of “Isolated Data Island” becomes more and more serious, resulting in the accuracy loss of the traditional electricity prediction model. Federated learning, as an emerging artificial intelligence technology, is designed to ensure data privacy while carrying out efficient machine learning, which provides a new way to solve the problem of “Isolated Data Island” in terms of electricity… More >

  • Open Access

    ARTICLE

    Federated Learning with Blockchain Assisted Image Classification for Clustered UAV Networks

    Ibrahim Abunadi1, Maha M. Althobaiti2, Fahd N. Al-Wesabi3,4, Anwer Mustafa Hilal5, Mohammad Medani6, Manar Ahmed Hamza5,*, Mohammed Rizwanullah5, Abu Serwar Zamani5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1195-1212, 2022, DOI:10.32604/cmc.2022.025473 - 24 February 2022

    Abstract The evolving “Industry 4.0” domain encompasses a collection of future industrial developments with cyber-physical systems (CPS), Internet of things (IoT), big data, cloud computing, etc. Besides, the industrial Internet of things (IIoT) directs data from systems for monitoring and controlling the physical world to the data processing system. A major novelty of the IIoT is the unmanned aerial vehicles (UAVs), which are treated as an efficient remote sensing technique to gather data from large regions. UAVs are commonly employed in the industrial sector to solve several issues and help decision making. But the strict regulations… More >

  • Open Access

    ARTICLE

    Federated Learning for Privacy-Preserved Medical Internet of Things

    Navod Neranjan Thilakarathne1, G. Muneeswari2, V. Parthasarathy3, Fawaz Alassery4, Habib Hamam5, Rakesh Kumar Mahendran6, Muhammad Shafiq7,*

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 157-172, 2022, DOI:10.32604/iasc.2022.023763 - 05 January 2022

    Abstract Healthcare is one of the notable areas where the integration of the Internet of Things (IoT) is highly adopted, also known as the Medical IoT (MIoT). So far, MIoT is revolutionizing healthcare because it provides many advantages for the benefit of patients and healthcare personnel. The use of MIoT is becoming a booming trend, generating a large amount of IoT data, which requires proper analysis to infer meaningful information. This has led to the rise of deploying artificial intelligence (AI) technologies, such as machine learning (ML) and deep learning (DL) algorithms, to learn the meaning… More >

  • Open Access

    ARTICLE

    Multi-Agent Deep Q-Networks for Efficient Edge Federated Learning Communications in Software-Defined IoT

    Prohim Tam1, Sa Math1, Ahyoung Lee2, Seokhoon Kim1,3,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3319-3335, 2022, DOI:10.32604/cmc.2022.023215 - 07 December 2021

    Abstract Federated learning (FL) activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes. However, in large-scale heterogeneous Internet of Things (IoT) cellular networks, massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly. This paper introduces the system model of converging software-defined networking (SDN) and network functions virtualization (NFV) to enable device/resource abstractions and provide NFV-enabled edge FL (eFL) aggregation servers for advancing automation and controllability. Multi-agent deep Q-networks (MADQNs) target to enforce a… More >

  • Open Access

    Fed-DFE: A Decentralized Function Encryption-Based Privacy-Preserving Scheme for Federated Learning

    Zhe Sun1, Jiyuan Feng1, Lihua Yin1,*, Zixu Zhang2, Ran Li1, Yu Hu1, Chongning Na3

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1867-1886, 2022, DOI:10.32604/cmc.2022.022290 - 03 November 2021

    Abstract Federated learning is a distributed learning framework which trains global models by passing model parameters instead of raw data. However, the training mechanism for passing model parameters is still threatened by gradient inversion, inference attacks, etc. With a lightweight encryption overhead, function encryption is a viable secure aggregation technique in federation learning, which is often used in combination with differential privacy. The function encryption in federal learning still has the following problems: a) Traditional function encryption usually requires a trust third party (TTP) to assign the keys. If a TTP colludes with a server, the… More >

  • Open Access

    ARTICLE

    FREPD: A Robust Federated Learning Framework on Variational Autoencoder

    Zhipin Gu1, Liangzhong He2, Peiyan Li1, Peng Sun3, Jiangyong Shi1, Yuexiang Yang1,*

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 307-320, 2021, DOI:10.32604/csse.2021.017969 - 12 August 2021

    Abstract Federated learning is an ideal solution to the limitation of not preserving the users’ privacy information in edge computing. In federated learning, the cloud aggregates local model updates from the devices to generate a global model. To protect devices’ privacy, the cloud is designed to have no visibility into how these updates are generated, making detecting and defending malicious model updates a challenging task. Unlike existing works that struggle to tolerate adversarial attacks, the paper manages to exclude malicious updates from the global model’s aggregation. This paper focuses on Byzantine attack and backdoor attack in… More >

Displaying 61-70 on page 7 of 70. Per Page