Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access


    High Magnetic Field Annealing Dependent the Morphology and Microstructure of Nanocrystalline Co/Ni Bilayered Films

    Donggang Li1,2, Alexandra Levesque2, Qiang Wang1,3,2, Agnieszka Franczak2, Chun Wu1, Jean-Paul Chopart2, Jicheng He1

    CMC-Computers, Materials & Continua, Vol.30, No.3, pp. 207-218, 2012, DOI:10.3970/cmc.2012.030.207

    Abstract Co/Ni bilayered films were prepared on ITO glass by electrodeposition assisted with a magnetic field up to 0.5T aligned parallel to the electrode surface. The effect of a high magnetic field annealing up to 12T on morphology and microstructure of the post-deposited films was investigated by field emission scanning electronic microscopy (FE-SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). Grain shape and grain boundary in the Co/Ni morphology were modified dramatically when the high magnetic field was applied during the annealing process. Magnetic anisotropy appeared in the films due to the preferential orientation of More >

  • Open Access


    Overview of Computational Modeling in Nano/Micro Scaled Thin Films Mechanical Properties and Its Applications

    Chang-Chun Lee1,*, Pei-Chen Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 239-260, 2019, DOI:10.32604/cmes.2019.06859

    Abstract This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films, in which the application of different computational methods is included. The concept and fundamental theories of concerned applications, material behavior estimations, interfacial delamination behavior, strain engineering, and multilevel modeling are thoroughly discussed. Moreover, an example of an interfacial adhesion estimation is presented to systematically estimate the related mechanical reliability issue in the microelectronic industry. The presented results show that the peeled mode fracture is the dominant delamination behavior of layered material system, with high stiffness along the bonding interface. More >

  • Open Access


    Thin Film Flow Over and Around Surface Topography: a General Solver for the Long-Wave Approximation and Related Equations

    P.H. Gaskell1, Y.C. Lee2, H.M. Thompson1

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.1, pp. 77-112, 2010, DOI:10.3970/cmes.2010.062.077

    Abstract The three-dimensional flow of a gravity-driven continuous thin liquid film on substrates containing micro-scale features is modelled using the long-wave lubrication approximation, encompassing cases when surface topography is either engulfed by the film or extends all the way though it. The discrete analogue of the time-dependent governing equations is solved accurately using a purpose designed multigrid strategy incorporating both automatic error-controlled adaptive time stepping and local mesh refinement/de-refinement. Central to the overall approach is a Newton globally convergent algorithm which greatly simplifies the inclusion of further physics via the solution of additional equations of the More >

  • Open Access


    The Temperature-Quantum-Correction Effect on the MD-Calculated Thermal Conductivity of Silicon Thin Films

    Tai-Ming Chang1, Chien-Chou Weng1, Mei-Jiau Huang1,2, Chun-KaiLiu2, Chih-Kuang Yu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 47-66, 2009, DOI:10.3970/cmes.2009.050.047

    Abstract We employ the non-equilibrium molecular dynamics (NEMD) simulation to calculate the in-plane thermal conductivity of silicon thin films of thickness 2.2nm and 11nm. To eliminate the finite-size effect, samples of various lengths are simulated and an extrapolation technique is applied. To perform the quantum correction which is necessary as the MD simulation temperature is lower than Debye temperature, the confined phonon spectra are obtained in advance via the EMD simulations. The investigation shows the thermal conductivities corrected based on the bulk and thin-film phonon densities of states are very close and they agree excellently with More >

  • Open Access


    Numerical Modeling of Short-Pulse Laser Interactions with Multi-Layered Thin Metal Films

    E. Majchrzak1, B. Mochnacki2, A. L. Greer3, J. S. Suchy4

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.2, pp. 131-146, 2009, DOI:10.3970/cmes.2009.041.131

    Abstract Multi-layered thin metal film subjected to a short-pulse laser heating is considered. Mathematical description of the process discussed bases on the equation in which there appear the relaxation time and the thermalization time (dual-phase-lag-model). In this study we develop a three level implicit finite difference scheme for numerical modelling of heat transfer in non-homogeneous metal film. At the interfaces an ideal contact between successive layers is assumed. At the stage of computations a solution of only one three-diagonal linear system corresponds to transition from time t to t + Δt. The mathematical model, numerical algorithm and examples More >

  • Open Access


    Molecular Dynamics Study of Size Effects and Deformation of Thin Films due to Nanoindentation

    Arun K. Nair1, Diana Farkas2, Ronald D. Kriz1

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 239-248, 2008, DOI:10.3970/cmes.2008.024.239

    Abstract The indentation response of Ni thin films of thicknesses in the nano scale was studied using molecular dynamics simulations with embedded atom method (EAM) interatomic potentials. Simulations were performed in single crystal films in the [111] orientation with thicknesses of 7nm and 33nm. In the elastic regime, the loading curves observed start deviating from the Hertzian predictions for indentation depths greater than 2.5% of the film thickness. The observed loading curves are therefore dependent on the film thickness. The simulation results also show that the contact stress necessary to emit the first dislocation under the More >

  • Open Access


    Molecular-Dynamics Analysis of Grain-Boundary Grooving in Interconnect Films with Underlayers

    T. Iwasaki1 and H. Miura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 551-558, 2003, DOI:10.3970/cmes.2003.004.551

    Abstract We have developed a molecular-dynamics technique for investigating migration-induced failures in interconnect films for ULSIs. This technique was used to simulate grain-boundary grooving in Al and Cu films. The simulations showed that the grain-boundary grooves are formed by atomic diffusion at the grain boundary. To clarify what kind of underlay material is effective in suppressing this diffusion, we calculated the dependence of groove depth on the kind of underlay material. The calculation showed that the groove depth of the Al film decreases in the order: Al/Ta, Al/W, and Al/TiN while that of the Cu film More >

  • Open Access


    Dislocation Nucleation and Propagation During Thin Film Deposition Under Tension

    W. C. Liu, S. Q. Shi, C. H. Woo, Hanchen Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 213-218, 2002, DOI:10.3970/cmes.2002.003.213

    Abstract Using molecular dynamics method, we study the nucleation of dislocations and their subsequent propagation during the deposition of tungsten thin films under tension. Aiming to reveal the generic mechanisms of dislocation nucleation during the deposition of polycrystalline thin films, the case of tungsten on a substrate of the same material is considered. The substrate is under uniaxial tension along the [111] direction, with the thermodynamically favored (01ˉˉ1) surface being horizontal. The simulation results indicate that the nucleation starts with a surface step, where a surface atom is pressed into the film along the [111ˉˉ] More >

  • Open Access


    Thermal Stress Analysis of Multi-layer Thin Films and Coatings by an Advanced Boundary Element Method

    Xiaolin Chen, Yijun Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 337-350, 2001, DOI:10.3970/cmes.2001.002.337

    Abstract An advanced boundary element method (BEM) is developed in this paper for analyzing thin layered structures, such as thin films and coatings, under the thermal loading. The boundary integral equation (BIE) formulation for steady-state thermoelasticity is reviewed and a special case, that is, the BIE for a uniform distribution of the temperature change, is presented. The new nearly-singular integrals arising from the applications of the BIE/BEM to thin layered structures under thermal loading are treated in the same way as developed earlier for thin structures under the mechanical loading. Three 2-D test problems involving layered More >

  • Open Access


    The Influence of Annealing in Nitrogen Atmosphere on the Electrical, Optical and Structural Properties of Spray-Deposited ZnO Thin Films

    Shadia J Ikhmayies1, Naseem M. Abu El-Haija2, Riyad N. Ahmad-Bitar3

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 219-232, 2010, DOI:10.3970/fdmp.2010.006.219

    Abstract Large area and highly uniform polycrystalline ZnO thin films have been produced by a spray pyrolysis (SP) technique resorting to a customized system (spraying) on glass substrates at temperature Ts= 450℃. This study deals with the related investigation about the influence of heat treatment (in nitrogen atmosphere) on the resulting properties (electrical, optical and structural) of such films. Properties are analyzed by means of I-V plots, transmittance curves, X-Ray diffractograms (XRD) and scanning electron microscope (SEM) micrographs. Results show that the resistivity of the films decreases from about 200W.cm for the as-deposited films to about… More >

Displaying 51-60 on page 6 of 72. Per Page