Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Effective Surface Susceptibility Models for Periodic Metafilms Within the Dipole Approximation Technique

    A.I. Dimitriadis1, N.V. Kantartzis1 and T.D. Tsiboukis1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 231-265, 2014, DOI:10.3970/cmc.2014.039.231

    Abstract The most important surface susceptibility models for the electromagnetic characterization of periodic metafilms, based on the dipole approximation method, are systematically analyzed in this paper. Specifically, two well-known techniques, which lead to a set of local effective surface parameters, are investigated along with a new dynamic non-local modeling algorithm. The latter formulation is properly expanded, in order to be applicable for any arbitrary periodic metafilm, irrespective of its way of excitation. The featured schemes are then directly compared toward their ability to efficiently predict the reflection and transmission properties of several lossless and lossy metafilms. Their outcomes are carefully verified… More >

  • Open Access

    ARTICLE

    Rupture and Instability of Soft Films due to Moisture Vaporization in Microelectronic Devices

    Linsen Zhu1, Jiang Zhou2, Xuejun Fan2

    CMC-Computers, Materials & Continua, Vol.39, No.2, pp. 113-134, 2014, DOI:10.3970/cmc.2014.039.113

    Abstract In this paper, a damage mechanics-based continuum theory is developed for the coupled analysis of moisture vaporization, moisture absorption and desorption, heat conduction, and mechanical stress for a reflow process in microelectronic devices. The extremely compliant film has been used in wafer level lamination process. Such a soft film experiences cohesive rupture subjected to moisture absorption during reflow. The numerical simulation results have demonstrated that vapor pressure due to moisture vaporization is the dominant driving force for the failures. The correlation between the vapor pressure evolution and the film rupture observed from the experiments have been established through two case… More >

  • Open Access

    ARTICLE

    Effects of High Magnetic Field on the Structure and Magnetic Properties of Molecular Beam Vapor Deposited Fe60Ni40 Thin Films

    Yongze Cao1, Guojian Li1, Qiang Wang1,2, Xiaoguang Wang3, Jiaojiao Du1, Jicheng He1

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 195-203, 2013, DOI:10.3970/cmc.2013.037.195

    Abstract The Fe60Ni40 (in atomic %) polycrystalline thin films with 90 nm thickness were prepared on 200 °C quartz substrate by using molecular beam vapor deposition method. The influence of 0 T and 6 T magnetic fields on the structural evolution and magnetic properties of thin films was studied by using EDXS, XRD, AFM and VSM. In this study, only α phase was formed in both thin films. It was found that the application of a 6 T magnetic field obviously decreases the RMS of surface roughness and the grain size. For the magnetic properties of the thin films, the 6… More >

  • Open Access

    ARTICLE

    Effects of High Magnetic Field and Post-Annealing on the Evaporated Ni/Si (100) Thin Films

    Jiaojiao Du1, Guojian Li1, Qiang Wang1,2, Yongze Cao1, Jicheng He1, Yonghui Ma1

    CMC-Computers, Materials & Continua, Vol.34, No.2, pp. 117-129, 2013, DOI:10.3970/cmc.2013.034.117

    Abstract The effects of high magnetic field and post-annealing on the structural, electrical and magnetic properties of the evaporated Ni films were investigated and compared. The in-situ application of a 6 T magnetic field during evaporation or post-annealing at 200°C did not change the crystal structures of the films. However, the magnetic field makes the films exhibit the smallest grain size and the lowest surface roughness. Crystallinity was improved for both the 6 T films and the annealed films. This leads to the enhancement of saturation magnetization (Ms). The value of Ms for the 0 T films was 588 emu/cm3, while… More >

  • Open Access

    ARTICLE

    Electromagnetic Shielding Effectiveness of Grid-Mesh Films Made of Polyaniline: a Numerical Approach

    S. H. Kwon1, B. R. Kim2, H. K. Lee2,3

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 65-86, 2011, DOI:10.3970/cmc.2011.021.065

    Abstract The electromagnetic shielding effectiveness of grid-mesh films made of polyaniline was numerically investigated, and the optimal size of the polyaniline grid was determined through numerical analyses. The permittivity of polyaniline was first determined from an inverse analysis based on experimental data. A series of numerical analyses were carried out with 225 polyaniline grid-mesh films of different thickness, spacing, and width, and the shielding effectiveness of every grid was examined. In addition to the numerical analysis, the transparency of the grid-mesh films and the amount of polyaniline material required to manufacture the unit grid area (1mx1m) were calculated. The optimal dimensions… More >

  • Open Access

    ARTICLE

    Application of Cosserat Theory to the Modelling of Reinforced Carbon Nananotube Beams

    Veturia Chiroiu1, Ligia Munteanu2 and Antonio S. Gliozzi3

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 1-16, 2010, DOI:10.3970/cmc.2010.019.001

    Abstract This paper develops a mechanical model for multifunctional reinforced carbon nanotube (CNT) beams. The model is obtained by introducing the couple stresses into the constitutive equations of linear viscoelastic theory. The material functions are determined using the homogenization method. More >

  • Open Access

    ARTICLE

    Stress Field Effects on Phonon Properties in Spatially Confined Semiconductor Nanostructures

    L.L. Zhu1,2,3, X.J. Zheng1,2

    CMC-Computers, Materials & Continua, Vol.18, No.3, pp. 301-320, 2010, DOI:10.3970/cmc.2010.018.301

    Abstract The phonon properties of spatially confined nanofilms under the preexisting stress fields are investigated theoretically by accounting for the confinement effects and acoustoelastic effects. Due to the spatial confinement in low-dimensional structures, the phonon dispersion relations, phonon group velocities as well as the phonon density of states are of significant difference with the ones in bulk structures. Here, the continuum elasticity theory is made use of to determine the phonon dispersion relations of shear modes (SH), dilatational modes (SA) and the flexural modes (AS), thus to analyze the contribution of stress fields on the phonon performance of confined nanofilms. Our… More >

  • Open Access

    ARTICLE

    Young's Modulus Measurement of Thin Films by Resonant Frequency Method Using Magnetostrictive Resonator

    Hao-Miao Zhou1, Fang Li1, Qiang Ye1, Ji-Xiang Zhao1, Zhe-Lei Xia1, YingTang2, Jing Wei3

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 235-248, 2009, DOI:10.3970/cmc.2009.013.235

    Abstract At present, there are many methods about Young's modulus measurement of thin films, but so far there is no recognized simple, non-destructive and cheaper standard measurement method. Considering thin films with various thicknesses were sputter deposited on the magnetostrictive resonator and monitoring the resonator's first-order longitudinal resonant frequency shift both before and after deposition induced by external magnetic field, an Young's modulus assessing method based on classical laminated plate theory is presented in this paper. Using the measured natural frequencies of Au, Cu, Cr, Al and SiC materials with various thicknesses in the literature, the Young's modulus of the five… More >

Displaying 51-60 on page 6 of 58. Per Page