Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (148)
  • Open Access

    ARTICLE

    A Continuum-Microscopic Method Based on IRBFs and Control Volume Scheme for Viscoelastic Fluid Flows

    C.-D. Tran1, N. Mai-Duy1,1, K. Le-Cao1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.6, pp. 499-520, 2012, DOI:10.3970/cmes.2012.085.499

    Abstract A numerical computation of continuum-microscopic model for visco-elastic flows based on the Integrated Radial Basis Function (IRBF) Control Volume and the Stochastic Simulation Techniques (SST) is reported in this paper. The macroscopic flow equations are closed by a stochastic equation for the extra stress at the microscopic level. The former are discretised by a 1D-IRBF-CV method while the latter is integrated with Euler explicit or Predictor-Corrector schemes. Modelling is very efficient as it is based on Cartesian grid, while the integrated RBF approach enhances both the stability of the procedure and the accuracy of the More >

  • Open Access

    ARTICLE

    Experimental and Numerical Studies on Heat Transfer and Fluid Flow in a Duct Fitted with Inclined Baffles

    W. A. El-Askary, A. Abdel-Fattah

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 425-458, 2012, DOI:10.3970/cmes.2012.083.425

    Abstract In the present paper, experimental and numerical studies of heat transfer and the frictional head loss of turbulent flow in a duct with a heated upper surface are performed. Four different arrangements are considered (case 1: without baffles, case 2: one perforated baffle on the upper wall and one solid baffle on the lower wall, case 3: one perforated baffle on the upper wall and one perforated baffle on the lower wall and case 4: two perforated baffles on the upper wall). A numerical code developed by the present authors is simultaneously presented including four… More >

  • Open Access

    ARTICLE

    A Mesh Free Method for Simulations of Incompressible Fluid Flow

    M. Chatterjee, A.K. Mahendra, A.Sanyal, G. Gouthaman

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 385-402, 2012, DOI:10.3970/cmes.2012.083.385

    Abstract In this paper, we describe an Incompressible Navier-Stokes (INS) sol -ver using mesh less least square based discretisation on arbitrary distribution of points. The method uses modified Artificial Compressibility Method (ACM) with least square based discretisation. The Solver operates on an arbitrary distribution of points and uses a novel least squares based method that replaces the normal equations approach. This method generates the non-symmetric cross-product matrix by suitable selection of sub stencils such that the matrix is diagonally dominant and well conditioned. The INS solver has been validated with results available in literature for standard More >

  • Open Access

    ARTICLE

    Fluid Flow Simulation Using Particle Method and Its Physics-based Computer Graphics

    Kazuhiko Kakuda1, Shunsuke Obara1, Jun Toyotani1, Mitsuhiko Meguro1, Masakazu Furuichi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.1, pp. 57-72, 2012, DOI:10.3970/cmes.2012.083.057

    Abstract The application of a particle method to incompressible viscous fluid flow problem and its physics-based computer graphics are presented. The method is based on the MPS (Moving Particle Semi-implicit) scheme using logarithmic weighting function to stabilize the spurious oscillatory solutions for the pressure fields which are governed by Poisson equation. The physics-based computer graphics consist of the POV-Ray (Persistence of Vision Raytracer) rendering using marching cubes algorithm as polygonization. The standard MPS scheme is widely utilized as a particle strategy for the free surface flow, the problem of moving boundary, multi-physics/multi-scale ones, and so forth. More >

  • Open Access

    ARTICLE

    Fluid Flow Behavior of a Binary Mixture Under the Influence of External Disturbances Using Different Density Models

    A. Parsa1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 27-50, 2012, DOI:10.3970/fdmp.2011.008.027

    Abstract Experiments onboard the International Space Station typically display undesired convective flow as a results of unwanted oscillatory g-jitters. A cubic rigid cell filled with water (90%) and isopropanol (10%) with a thermal gradient and forced vibrations is considered. The cell is under the influence of three different levels of periodic oscillation (Ravib ≈ 1.6, 650 and 4000) applied perpendicular to the temperature gradient. In this paper, we examine the transport process (fluid flow, heat transfer and mass transfer) due to oscillatory g-jitters in the presence of Soret effect. The full transient Navier Stokes equations coupled with More >

  • Open Access

    ARTICLE

    Simulation of Reactive Fluid Flow in a Solid Rocket Motor Combustion-Chamber with/without Nozzle

    W. A. El-Askary1,2, S. A. Wilson2, A. Hegab2

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 235-266, 2011, DOI:10.3970/cmes.2011.076.235

    Abstract In the present work, a complete simulation of reactive flow in the combustion chamber of a rocket motor equipped with convergent-divergent nozzle has been introduced. The model describes the combustion process inside the combustion chamber considering a steady premixed reactant gas injected through side porous walls of the combustion chamber. The products flow through a convergent-divergent nozzle with adiabatic impermeable walls. The reactants are treated as two-dimensional, multi-components, turbulent compressible flow. The local properties of the mixture are calculated and updated during the solution process. At the boundary of the combustion chamber, a constant mass More >

  • Open Access

    ARTICLE

    The Importance of Adequate Turbulence Modeling in Fluid Flows

    L.Q. Moreira1, F.P. Mariano2, A. Silveira-Neto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.2, pp. 113-140, 2011, DOI:10.3970/cmes.2011.075.113

    Abstract Turbulence in fluid flow is one of the most challenging problems in classical physics. It is a very important research problem because of its numerous implications, such as industrial applications that involve processes using mixtures of components, heat transfer and lubrication and injection of fuel into the combustion chambers and propulsion systems of airplanes. Turbulence in flow presents characteristics that are fully nonlinear and that occur at high Reynolds numbers. Because of the nonlinear nature of turbulent flow, an increase in the Reynolds number implies an increase in the Kolmogorov wave numbers, and the flow… More >

  • Open Access

    ARTICLE

    An Integrated RBFN-Based Macro-Micro Multi-Scale Method for Computation of Visco-Elastic Fluid Flows

    C.-D. Tran1, D.-A. An-Vo1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.2, pp. 137-162, 2011, DOI:10.32604/cmes.2011.082.137

    Abstract This paper presents a numerical approach for macro-micro multi-scale modelling of visco-elastic fluid flows based on the Integrated Radial Basis Function Networks (IRBFNs) and the Stochastic Simulation Technique (SST). The extra stress is calculated using the Brownian configuration fields (BCFs) technique while the velocity field is locally approximated at a set of collocation points using 1D-IRBFNs. In this approach, the stress is decoupled from the velocity field and computed from the molecular configuration directly without the need for a closed form rheological constitutive equation. The equations governing the macro flow field are discretised using a More >

  • Open Access

    ARTICLE

    Adaptively Refined Hybrid FDM-RBF Meshless Scheme with Applications to Laminar and Turbulent Viscous Fluid Flows

    S. Gerace1, K. Erhart1, E. Divo1,2, A. Kassab1

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.1, pp. 35-68, 2011, DOI:10.3970/cmes.2011.081.035

    Abstract The focus of this work is to demonstrate a novel approach to true CFD automation based on an adaptive Cartesian point distribution process coupled with a Meshless flow solution algorithm. As Meshless method solutions require only an underlying nodal distribution, this approach works well even for complex flow geometries with non-aligned domain boundaries. Through the addition of a so-called shadow layer of body-fitted nodes, application of boundary conditions is simplified considerably, eliminating the stair-casing issues of typical Cartesian-based techniques. This paper describes the approach taken to automatically generate the Meshless nodal distribution, along with the More >

  • Open Access

    ARTICLE

    Coupled Evolution of Damage and Fluid Flow in a Mandel-type Problem

    Eduardo T Lima Junior1, Wilson S Venturini2, Ahmed Benallal3

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 169-184, 2011, DOI:10.3970/cmes.2011.078.169

    Abstract Some considerations on the numerical analysis of brittle rocks are presented in this paper. The rock is taken as a poro-elastic domain, in full-saturated condition, based on the Biot's Theory. The solid matrix of this porous medium is considered to be susceptible to isotropic damage occurrence. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatics problems. The integration over boundary elements is evaluated by using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is More >

Displaying 121-130 on page 13 of 148. Per Page