Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (226)
  • Open Access

    ARTICLE

    An Efficient Mesh-Free Method for Nonlinear Reaction-Diffusion Equations

    M.A. Golberg1, C.S. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 87-96, 2001, DOI:10.3970/cmes.2001.002.087

    Abstract The purpose of this paper is to develop a highly efficient mesh-free method for solving nonlinear diffusion-reaction equations in Rd, d=2, 3. Using various time difference schemes, a given time-dependent problem can be reduced to solving a series of inhomogeneous Helmholtz-type equations. The solution of these problems can then be further reduced to evaluating particular solutions and the solution of related homogeneous equations. Recently, radial basis functions have been successfully implemented to evaluate particular solutions for Possion-type equations. A more general approach has been developed in extending this capability to obtain particular solutions for Helmholtz-type equations by using polyharmonic spline… More >

  • Open Access

    ARTICLE

    Application of Multi-Region Trefftz Method to Elasticity

    J. Sladek1, V. Sladek1, V. Kompis2, R. Van Keer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 1-8, 2000, DOI:10.3970/cmes.2000.001.453

    Abstract This paper presents an application of a direct Trefftz method with domain decomposition to the two-dimensional elasticity problem. Trefftz functions are substituted into Betti's reciprocity theorem to derive the boundary integral equations for each subdomain. The values of displacements and tractions on subdomain interfaces are tailored by continuity and equilibrium conditions, respectively. Since Trefftz functions are regular, much less requirements are put on numerical integration than in the traditional boundary integral method. Then, the method can be utilized to analyse also very narrow domains. Linear elements are used for modelling of the boundary geometry and approximation of boundary quantities. Numerical… More >

  • Open Access

    ARTICLE

    General Application of Numerical Green's Functions for SIF Computations With Boundary Elements

    S. Guimarães1, J.C.F. Telles2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 131-139, 2000, DOI:10.3970/cmes.2000.001.433

    Abstract The paper discusses further applications of the hyper-singular boundary integral equation to obtain the Green's function solution to general geometry fracture mechanics problems, such as curved multifracture crack simulation, static and transient dynamic in 2-D, 3-D and plate bending problems. This numerical Green's function (NGF) is implemented into alternative boundary element computer programs, as the fundamental solution, to enhance the scope of alternative applications of the NGF procedure.
    The results to some typical linear fracture mechanics problems are presented. More >

  • Open Access

    ARTICLE

    An Adaptive Multi-resolution Method for Solving PDE's

    V. Kozulić1, H. Gotovac1, B. Gotovac1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 51-70, 2007, DOI:10.3970/cmc.2007.006.051

    Abstract In this paper, we present a multi-resolution adaptive algorithm for solving problems described by partial differential equations. The technique is based on the collocation method using Fup basis functions, which belong to a class of Rvachev's infinitely differentiable finite functions. As it is possible to calculate derivation values of Fup basis functions of high degree in a precise yet simple way, so it is possible to efficiently apply strong formulation procedures. The mesh free method developed in this work is named Adaptive Fup Collocation Method (AFCM). The distribution of collocation points within the observed area is changed adaptively, depending on… More >

  • Open Access

    ARTICLE

    A Comparative Study of Meshless Approximations in Local Integral Equation Method

    Vladimir Sladek1, Jan Sladek1, Chuanzeng Zhang2

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 177-188, 2006, DOI:10.3970/cmc.2006.004.177

    Abstract This paper concerns the stability, convergence of accuracy and cost efficiency of four various formulations for solution of boundary value problems in non-homogeneous elastic solids with functionally graded Young's modulus. The meshless point interpolation method is employed with using various basis functions. The interaction among the elastic continuum constituents is considered in the discretized formulation either by collocation of the governing equations or by integral satisfaction of the force equilibrium on local sub-domains. The exact benchmark solutions are used in numerical tests. More >

  • Open Access

    ARTICLE

    Ab Initio Molecular-Dynamics Simulation Liquid and Amorphous Al94-xNi6Lax (x=3-9) Alloys

    Lu Wang1,2, Cuihhong Yang2, Tong Liu3, Hongyan Wu2,*

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 757-765, 2019, DOI:10.32604/cmc.2019.04499

    Abstract Ab initio molecular-dynamics simulations have been used to investigate the liquid and amorphous Al94-xNi6Lax (x=3-9) alloys. Through calculating the pair distribution functions and partial coordination numbers, the structure and properties of these alloys are researched, which will help the design bulk metallic glass. The concentration of La atoms can affect the short-range order of Al94-xNi6Lax alloys, which is also studied in this calculation result. More >

  • Open Access

    ARTICLE

    Automatic Mining of Security-Sensitive Functions from Source Code

    Lin Chen1,2, Chunfang Yang1,2,*, Fenlin Liu1,2, Daofu Gong1,2, Shichang Ding3

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 199-210, 2018, DOI: 10.3970/cmc.2018.02574

    Abstract When dealing with the large-scale program, many automatic vulnerability mining techniques encounter such problems as path explosion, state explosion, and low efficiency. Decomposition of large-scale programs based on safety-sensitive functions helps solve the above problems. And manual identification of security-sensitive functions is a tedious task, especially for the large-scale program. This study proposes a method to mine security-sensitive functions the arguments of which need to be checked before they are called. Two argument-checking identification algorithms are proposed based on the analysis of two implementations of argument checking. Based on these algorithms, security-sensitive functions are detected based on the ratio of… More >

  • Open Access

    ARTICLE

    Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media

    V. G. Yakhno1, B. Çiçek2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 141-166, 2014, DOI:10.3970/cmc.2014.044.141

    Abstract A method for an approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in the general electrically gyrotropic materials is proposed. This method is based on the Fourier transform meta-approach: the equations for electric and magnetic fields are written in terms of images of the Fourier transform with respect to space variables and as a result of it the linear algebraic systems for finding Fourier images of the columns of the Green’s functions are obtained. The explicit formulas for the solutions of the obtained systems have been found. Finally, elements of the Green’s functions are… More >

  • Open Access

    ARTICLE

    Analytical Treatment of the Isotropic and Tetragonal Lattice Green Functions for the Face-centered Cubic, Body-centered Cubic and Simple Cubic Lattices

    B.A. Mamedov1

    CMC-Computers, Materials & Continua, Vol.43, No.2, pp. 87-96, 2014, DOI:10.3970/cmc.2014.043.087

    Abstract In this paper, we propose an efficient method to calculate the isotropic and tetragonal lattice Green functions for the face-centered cubic (FCC), bodycentered cubic (BCC) and simple cubic (SC) lattices. The method is based on binomial expansion theorems, which provide us with analytical formulae through basic integrals. The resulting series present better convergence rates. Several acceleration techniques are combined to further improve the efficiency of the established formulas. The obtained results for the lattice Green functions are in good agreement with the known numerical calculation results. More >

  • Open Access

    ARTICLE

    Domain Type Kernel-Based Meshless Methods for Solving Wave Equations

    L.H. Kuo1, M.H. Gu2, D.L. Young3, C.Y. Lin3

    CMC-Computers, Materials & Continua, Vol.33, No.3, pp. 213-228, 2013, DOI:10.3970/cmc.2013.033.213

    Abstract Coupled with the Houbolt method, a third order finite difference time marching scheme, the method of approximate particular solutions (MAPS) has been applied to solve wave equations. Radial basis function has played an important role in the solution process of the MAPS. To show the effectiveness of the MAPS, we compare the results with the well known Kansa's method, timemarching method of fundamental solutions (TMMFS), and traditional finite element methods. To validate the effectiveness and easiness of the MAPS, four numerical examples which including regular, smooth irregular, and non-smooth domains are given. More >

Displaying 211-220 on page 22 of 226. Per Page