Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    A Non-singleton Type-3 Fuzzy Modeling: Optimized by Square-Root Cubature Kalman Filter

    Aoqi Xu1, Khalid A. Alattas2, Nasreen Kausar3, Ardashir Mohammadzadeh4, Ebru Ozbilge5,*, Tonguc Cagin5

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 17-32, 2023, DOI:10.32604/iasc.2023.036623

    Abstract In many problems, to analyze the process/metabolism behavior, a model of the system is identified. The main gap is the weakness of current methods vs. noisy environments. The primary objective of this study is to present a more robust method against uncertainties. This paper proposes a new deep learning scheme for modeling and identification applications. The suggested approach is based on non-singleton type-3 fuzzy logic systems (NT3-FLSs) that can support measurement errors and high-level uncertainties. Besides the rule optimization, the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalman filter (SCKF).… More >

  • Open Access

    ARTICLE

    Output Linearization of Single-Input Single-Output Fuzzy System to Improve Accuracy and Performance

    Salah-ud-din Khokhar1,2,*, QinKe Peng1, Muhammad Yasir Noor3

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2413-2427, 2023, DOI:10.32604/cmc.2023.036148

    Abstract For fuzzy systems to be implemented effectively, the fuzzy membership function (MF) is essential. A fuzzy system (FS) that implements precise input and output MFs is presented to enhance the performance and accuracy of single-input single-output (SISO) FSs and introduce the most applicable input and output MFs protocol to linearize the fuzzy system’s output. Utilizing a variety of non-linear techniques, a SISO FS is simulated. The results of FS experiments conducted in comparable conditions are then compared. The simulated results and the results of the experimental setup agree fairly well. The findings of the suggested model demonstrate that the relative… More >

  • Open Access

    ARTICLE

    An Automatic Threshold Selection Using ALO for Healthcare Duplicate Record Detection with Reciprocal Neuro-Fuzzy Inference System

    Ala Saleh Alluhaidan1,*, Pushparaj2, Anitha Subbappa3, Ved Prakash Mishra4, P. V. Chandrika5, Anurika Vaish6, Sarthak Sengupta6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5821-5836, 2023, DOI:10.32604/cmc.2023.033995

    Abstract ESystems based on EHRs (Electronic health records) have been in use for many years and their amplified realizations have been felt recently. They still have been pioneering collections of massive volumes of health data. Duplicate detections involve discovering records referring to the same practical components, indicating tasks, which are generally dependent on several input parameters that experts yield. Record linkage specifies the issue of finding identical records across various data sources. The similarity existing between two records is characterized based on domain-based similarity functions over different features. De-duplication of one dataset or the linkage of multiple data sets has become… More >

  • Open Access

    ARTICLE

    Genetics Based Compact Fuzzy System for Visual Sensor Network

    Usama Abdur Rahman1,*, C. Jayakumar2, Deepak Dahiya3, C.R. Rene Robin4

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 409-426, 2023, DOI:10.32604/csse.2023.026846

    Abstract As a component of Wireless Sensor Network (WSN), Visual-WSN (VWSN) utilizes cameras to obtain relevant data including visual recordings and static images. Data from the camera is sent to energy efficient sink to extract key-information out of it. VWSN applications range from health care monitoring to military surveillance. In a network with VWSN, there are multiple challenges to move high volume data from a source location to a target and the key challenges include energy, memory and I/O resources. In this case, Mobile Sinks(MS) can be employed for data collection which not only collects information from particular chosen nodes called… More >

  • Open Access

    ARTICLE

    CNN Based Multi-Object Segmentation and Feature Fusion for Scene Recognition

    Adnan Ahmed Rafique1, Yazeed Yasin Ghadi2, Suliman A. Alsuhibany3, Samia Allaoua Chelloug4,*, Ahmad Jalal1, Jeongmin Park5

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4657-4675, 2022, DOI:10.32604/cmc.2022.027720

    Abstract Latest advancements in vision technology offer an evident impact on multi-object recognition and scene understanding. Such scene-understanding task is a demanding part of several technologies, like augmented reality-based scene integration, robotic navigation, autonomous driving, and tourist guide. Incorporating visual information in contextually unified segments, convolution neural networks-based approaches will significantly mitigate the clutter, which is usual in classical frameworks during scene understanding. In this paper, we propose a convolutional neural network (CNN) based segmentation method for the recognition of multiple objects in an image. Initially, after acquisition and preprocessing, the image is segmented by using CNN. Then, CNN features are… More >

  • Open Access

    ARTICLE

    Coyote Optimization Using Fuzzy System for Energy Efficiency in WSN

    Ahmed S. Almasoud1, Taiseer Abdalla Elfadil Eisa2, Marwa Obayya3, Abdelzahir Abdelmaboud4, Mesfer Al Duhayyim5, Ishfaq Yaseen6, Manar Ahmed Hamza6,*, Abdelwahed Motwakel6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3269-3281, 2022, DOI:10.32604/cmc.2022.024584

    Abstract In recent days, internet of things is widely implemented in Wireless Sensor Network (WSN). It comprises of sensor hubs associated together through the WSNs. The WSN is generally affected by the power in battery due to the linked sensor nodes. In order to extend the lifespan of WSN, clustering techniques are used for the improvement of energy consumption. Clustering methods divide the nodes in WSN and form a cluster. Moreover, it consists of unique Cluster Head (CH) in each cluster. In the existing system, Soft-K means clustering techniques are used in energy consumption in WSN. The soft-k means algorithm does… More >

  • Open Access

    ARTICLE

    Fuzzy System Design Using Current Amplifier for 20 nm CMOS Technology

    Shruti Jain1, Cherry Bhargava2, Vijayakumar Varadarajan3, Ketan Kotecha4,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1815-1829, 2022, DOI:10.32604/cmc.2022.024004

    Abstract In the recent decade, different researchers have performed hardware implementation for different applications covering various areas of experts. In this research paper, a novel analog design and implementation of different steps of fuzzy systems with current differencing buffered amplifier (CDBA) are proposed with a compact structure that can be used in many signal processing applications. The proposed circuits are capable of wide input current range, simple structure, and are highly linear. Different electrical parameters were compared for the proposed fuzzy system when using different membership functions. The novelty of this paper lies in the electronic implementation of different steps for… More >

  • Open Access

    ARTICLE

    Interpretable and Adaptable Early Warning Learning Analytics Model

    Shaleeza Sohail1, Atif Alvi2,*, Aasia Khanum3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3211-3225, 2022, DOI:10.32604/cmc.2022.023560

    Abstract Major issues currently restricting the use of learning analytics are the lack of interpretability and adaptability of the machine learning models used in this domain. Interpretability makes it easy for the stakeholders to understand the working of these models and adaptability makes it easy to use the same model for multiple cohorts and courses in educational institutions. Recently, some models in learning analytics are constructed with the consideration of interpretability but their interpretability is not quantified. However, adaptability is not specifically considered in this domain. This paper presents a new framework based on hybrid statistical fuzzy theory to overcome these… More >

  • Open Access

    ARTICLE

    Fuzzy-Based Automatic Epileptic Seizure Detection Framework

    Aayesha1, Muhammad Bilal Qureshi2, Muhammad Afzaal3, Muhammad Shuaib Qureshi4, Jeonghwan Gwak5,6,7,8,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5601-5630, 2022, DOI:10.32604/cmc.2022.020348

    Abstract Detection of epileptic seizures on the basis of Electroencephalogram (EEG) recordings is a challenging task due to the complex, non-stationary and non-linear nature of these biomedical signals. In the existing literature, a number of automatic epileptic seizure detection methods have been proposed that extract useful features from EEG segments and classify them using machine learning algorithms. Some characterizing features of epileptic and non-epileptic EEG signals overlap; therefore, it requires that analysis of signals must be performed from diverse perspectives. Few studies analyzed these signals in diverse domains to identify distinguishing characteristics of epileptic EEG signals. To pose the challenge mentioned… More >

  • Open Access

    ARTICLE

    Data and Machine Learning Fusion Architecture for Cardiovascular Disease Prediction

    Munir Ahmad1, Majed Alfayad2, Shabib Aftab1,3, Muhammad Adnan Khan4,*, Areej Fatima5, Bilal Shoaib6, Mohammad Sh. Daoud7, Nouh Sabri Elmitwally2,8

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2717-2731, 2021, DOI:10.32604/cmc.2021.019013

    Abstract Heart disease, which is also known as cardiovascular disease, includes various conditions that affect the heart and has been considered a major cause of death over the past decades. Accurate and timely detection of heart disease is the single key factor for appropriate investigation, treatment, and prescription of medication. Emerging technologies such as fog, cloud, and mobile computing provide substantial support for the diagnosis and prediction of fatal diseases such as diabetes, cancer, and cardiovascular disease. Cloud computing provides a cost-efficient infrastructure for data processing, storage, and retrieval, with much of the extant research recommending machine learning (ML) algorithms for… More >

Displaying 1-10 on page 1 of 15. Per Page  

Share Link