Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access


    Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced Feature Extraction Processing

    V. Banupriya1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5597-5613, 2023, DOI:10.32604/cmc.2023.038696

    Abstract In the modern world, one of the most severe eye infections brought on by diabetes is known as diabetic retinopathy (DR), which will result in retinal damage, and, thus, lead to blindness. Diabetic retinopathy (DR) can be well treated with early diagnosis. Retinal fundus images of humans are used to screen for lesions in the retina. However, detecting DR in the early stages is challenging due to the minimal symptoms. Furthermore, the occurrence of diseases linked to vascular anomalies brought on by DR aids in diagnosing the condition. Nevertheless, the resources required for manually identifying the lesions are high. Similarly,… More >

  • Open Access


    Research on Federated Learning Data Sharing Scheme Based on Differential Privacy

    Lihong Guo*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5069-5085, 2023, DOI:10.32604/cmc.2023.034571

    Abstract To realize data sharing, and to fully use the data value, breaking the data island between institutions to realize data collaboration has become a new sharing mode. This paper proposed a distributed data security sharing scheme based on C/S communication mode, and constructed a federated learning architecture that uses differential privacy technology to protect training parameters. Clients do not need to share local data, and they only need to upload the trained model parameters to achieve data sharing. In the process of training, a distributed parameter update mechanism is introduced. The server is mainly responsible for issuing training commands and… More >

  • Open Access


    Effective and Efficient Video Compression by the Deep Learning Techniques

    Karthick Panneerselvam1,2,*, K. Mahesh1, V. L. Helen Josephine3, A. Ranjith Kumar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1047-1061, 2023, DOI:10.32604/csse.2023.030513

    Abstract Deep learning has reached many successes in Video Processing. Video has become a growing important part of our daily digital interactions. The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving, distributing, compressing and revealing high-quality video content. In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask, which creatively combines the Deep Learning Techniques on Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN). The video compression method involves the layers are divided into different groups for data processing, using… More >

  • Open Access


    Routing with Cooperative Nodes Using Improved Learning Approaches

    R. Raja1,*, N. Satheesh2, J. Britto Dennis3, C. Raghavendra4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2857-2874, 2023, DOI:10.32604/iasc.2023.026153

    Abstract In IoT, routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance. The evaluation of optimal routing and related routing parameters over the deployed network environment is challenging. This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory (s − LSTM) and Bi-directional Long Short Term Memory (b − LSTM). It is used to hold the routing information and random routing to attain superior performance. The proposed model is trained based on the searching and detection mechanisms to compute the packet delivery ratio (PDR), end-to-end (E2E) delay, throughput, etc. The anticipated… More >

  • Open Access


    A Novel Optimizer in Deep Neural Network for Diabetic Retinopathy Classification

    Pranamita Nanda1,*, N. Duraipandian2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1099-1110, 2022, DOI:10.32604/csse.2022.024695

    Abstract In severe cases, diabetic retinopathy can lead to blindness. For decades, automatic classification of diabetic retinopathy images has been a challenge. Medical image processing has benefited from advances in deep learning systems. To enhance the accuracy of image classification driven by Convolutional Neural Network (CNN), balanced dataset is generated by data augmentation method followed by an optimized algorithm. Deep neural networks (DNN) are frequently optimized using gradient (GD) based techniques. Vanishing gradient is the main drawback of GD algorithms. In this paper, we suggest an innovative algorithm, to solve the above problem, Hypergradient Descent learning rate based Quasi hyperbolic (HDQH)… More >

  • Open Access


    Secured Vehicle Life Cycle Tracking Using Blockchain and Smart Contract

    Srinivasan Ananthanarayanan Bragadeesh, Arumugam Umamakeswari*

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 1-18, 2022, DOI:10.32604/csse.2022.019842

    Abstract Life Cycle Tracking (LCT) involves continuous monitoring and analysis of various activities associated with a vehicle. The crucial factor in the LCT is to ensure the validity of gathered data as numerous supply chain phases are involved and the data is assessed by multiple stakeholders. Frauds and swindling activities can be prevented if the history of the vehicles is made available to the interested parties. Blockchain provides a way of enforcing trustworthiness to the supply chain participants and the data associated with the various actions performed. Machine learning techniques when combined decentralized nature of blockchains can be used to develop… More >

  • Open Access


    Energy-Efficiency Model for Residential Buildings Using Supervised Machine Learning Algorithm

    Muhammad Shoukat Aslam1, Taher M. Ghazal2,3, Areej Fatima4, Raed A. Said5, Sagheer Abbas1, Muhammad Adnan Khan6,7,*, Shahan Yamin Siddiqui1,8, Munir Ahmad1

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 881-888, 2021, DOI:10.32604/iasc.2021.017920

    Abstract The real-time management and control of heating-system networks in residential buildings has tremendous energy-saving potential, and accurate load prediction is the basis for system monitoring. In this regard, selecting the appropriate input parameters is the key to accurate heating-load forecasting. In existing models for forecasting heating loads and selecting input parameters, with an increase in the length of the prediction cycle, the heating-load rate gradually decreases, and the influence of the outside temperature gradually increases. In view of different types of solutions for improving buildings’ energy efficiency, this study proposed a Energy-efficiency model for residential buildings based on gradient descent… More >

  • Open Access


    An Efficient Energy Routing Protocol Based on Gradient Descent Method in WSNs

    Ru Jin*, Xinlian Zhou, Yue Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.3, pp. 115-123, 2020, DOI:10.32604/jihpp.2020.010180

    Abstract In a wireless sensor network [1], the operation of a node depends on the battery power it carries. Because of the environmental reasons, the node cannot replace the battery. In order to improve the life cycle of the network, energy becomes one of the key problems in the design of the wireless sensor network (WSN) routing protocol [2]. This paper proposes a routing protocol ERGD based on the method of gradient descent that can minimizes the consumption of energy. Within the communication radius of the current node, the distance between the current node and the next hop node is assumed… More >

  • Open Access


    A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning

    V. Sudha1,*, T. R. Ganeshbabu2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 827-842, 2021, DOI:10.32604/cmc.2020.012008

    Abstract Diabetic Retinopathy (DR) is a type of disease in eyes as a result of a diabetic condition that ends up damaging the retina, leading to blindness or loss of vision. Morphological and physiological retinal variations involving slowdown of blood flow in the retina, elevation of leukocyte cohesion, basement membrane dystrophy, and decline of pericyte cells, develop. As DR in its initial stage has no symptoms, early detection and automated diagnosis can prevent further visual damage. In this research, using a Deep Neural Network (DNN), segmentation methods are proposed to detect the retinal defects such as exudates, hemorrhages, microaneurysms from digital… More >

  • Open Access


    Modified PSO Algorithm on Recurrent Fuzzy Neural Network for System Identification

    Chung Wen Hung, Wei Lung Mao, Han Yi Huang

    Intelligent Automation & Soft Computing, Vol.25, No.2, pp. 329-341, 2019, DOI:10.31209/2019.100000093

    Abstract Nonlinear system modeling and identification is the one of the most important areas in engineering problem. The paper presents the recurrent fuzzy neural network (RFNN) trained by modified particle swarm optimization (MPSO) methods for identifying the dynamic systems and chaotic observation prediction. The proposed MPSO algorithms mainly modify the calculation formulas of inertia weights. Two MPSOs, namely linear decreasing particle swarm optimization (LDPSO) and adaptive particle swarm optimization (APSO) are developed to enhance the convergence behavior in learning process. The RFNN uses MPSO based method to tune the parameters of the membership functions, and it uses gradient descent (GD) based… More >

Displaying 1-10 on page 1 of 11. Per Page  

Share Link