Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Topic-Aware Abstractive Summarization Based on Heterogeneous Graph Attention Networks for Chinese Complaint Reports

    Yan Li1, Xiaoguang Zhang1,*, Tianyu Gong1, Qi Dong1, Hailong Zhu1, Tianqiang Zhang1, Yanji Jiang2,3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3691-3705, 2023, DOI:10.32604/cmc.2023.040492 - 08 October 2023

    Abstract Automatic text summarization (ATS) plays a significant role in Natural Language Processing (NLP). Abstractive summarization produces summaries by identifying and compressing the most important information in a document. However, there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics. In particular, Chinese complaint reports, generated by urban complainers and collected by government employees, describe existing resident problems in daily life. Meanwhile, the reflected problems are required to respond speedily. Therefore, automatic summarization tasks for these reports have been More >

  • Open Access

    ARTICLE

    Fine-Grained Multivariate Time Series Anomaly Detection in IoT

    Shiming He1,4, Meng Guo1, Bo Yang1, Osama Alfarraj2, Amr Tolba2, Pradip Kumar Sharma3, Xi’ai Yan4,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5027-5047, 2023, DOI:10.32604/cmc.2023.038551 - 29 April 2023

    Abstract Sensors produce a large amount of multivariate time series data to record the states of Internet of Things (IoT) systems. Multivariate time series timestamp anomaly detection (TSAD) can identify timestamps of attacks and malfunctions. However, it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis, a process referred to as fine-grained anomaly detection (FGAD). Although further FGAD can be extended based on TSAD methods, existing works do not provide a quantitative evaluation, and the performance is unknown. Therefore, to tackle the FGAD problem, this paper first verifies that… More >

  • Open Access

    ARTICLE

    Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network

    Qi Guo, Shujun Zhang*, Hui Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1653-1670, 2023, DOI:10.32604/cmes.2022.021784 - 20 September 2022

    Abstract Continuous sign language recognition (CSLR) is challenging due to the complexity of video background, hand gesture variability, and temporal modeling difficulties. This work proposes a CSLR method based on a spatial-temporal graph attention network to focus on essential features of video series. The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatial-temporal graph to reflect inter-frame relevance and physical connections between nodes. The graph-based multi-head attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration, and short-term motion correlation modeling More > Graphic Abstract

    Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network

  • Open Access

    ARTICLE

    Air Pollution Prediction Via Graph Attention Network and Gated Recurrent Unit

    Shun Wang1, Lin Qiao2, Wei Fang3, Guodong Jing4, Victor S. Sheng5, Yong Zhang1,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 673-687, 2022, DOI:10.32604/cmc.2022.028411 - 18 May 2022

    Abstract PM2.5 concentration prediction is of great significance to environmental protection and human health. Achieving accurate prediction of PM2.5 concentration has become an important research task. However, PM2.5 pollutants can spread in the earth’s atmosphere, causing mutual influence between different cities. To effectively capture the air pollution relationship between cities, this paper proposes a novel spatiotemporal model combining graph attention neural network (GAT) and gated recurrent unit (GRU), named GAT-GRU for PM2.5 concentration prediction. Specifically, GAT is used to learn the spatial dependence of PM2.5 concentration data in different cities, and GRU is to extract the… More >

  • Open Access

    ARTICLE

    Printed Surface Defect Detection Model Based on Positive Samples

    Xin Zihao1, Wang Hongyuan1,*, Qi Pengyu1, Du Weidong2, Zhang Ji1, Chen Fuhua3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5925-5938, 2022, DOI:10.32604/cmc.2022.026943 - 21 April 2022

    Abstract For a long time, the detection and extraction of printed surface defects has been a hot issue in the print industry. Nowadays, defect detection of a large number of products still relies on traditional image processing algorithms such as scale invariant feature transform (SIFT) and oriented fast and rotated brief (ORB), and researchers need to design algorithms for specific products. At present, a large number of defect detection algorithms based on object detection have been applied but need lots of labeling samples with defects. Besides, there are many kinds of defects in printed surface, so… More >

  • Open Access

    ARTICLE

    A Knowledge-Enhanced Dialogue Model Based on Multi-Hop Information with Graph Attention

    Zhongqin Bi1, Shiyang Wang1, Yan Chen2,*, Yongbin Li1, Jung Yoon Kim3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 403-426, 2021, DOI:10.32604/cmes.2021.016729 - 22 July 2021

    Abstract With the continuous improvement of the e-commerce ecosystem and the rapid growth of e-commerce data, in the context of the e-commerce ecosystem, consumers ask hundreds of millions of questions every day. In order to improve the timeliness of customer service responses, many systems have begun to use customer service robots to respond to consumer questions, but the current customer service robots tend to respond to specific questions. For many questions that lack background knowledge, they can generate only responses that are biased towards generality and repetitiveness. To better promote the understanding of dialogue and generate… More >

Displaying 11-20 on page 2 of 16. Per Page