Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ABSTRACT

    A New Molecular Structural Mechanics Model for the Flexural Analysis of Monolayer Graphene

    G. Shi, P. Zhao

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.1, pp. 9-10, 2011, DOI:10.3970/icces.2011.019.009

    Abstract Based on molecular mechanics, a new structural mechanics model, a 2-D frame composed of equivalent anisotropic beams and flexible connections, is proposed for the simulation of the static and dynamic flexural behavior of monolayer graphene. The equivalent beam representing the C-C bond in the new molecular structural mechanics (MSM) model has two salient features compared with other MSM models proposed for the analysis of carbon nanotubes: one is that the flexible connections at the beam ends are used to account for the bond-angle variations between the C-C bonds; and the other is that there are two principal bending rigidities used,… More >

  • Open Access

    ABSTRACT

    Carbon Nanotubes and graphenes: nanomaterials and nanodevices

    Chen Minjiang, Fang Yu, Huanchao Yang, Haiqing Zhou, Lianfeng Sun

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.1, pp. 25-26, 2011, DOI:10.3970/icces.2011.018.025

    Abstract Some of our recent experimental works on carbon nanotube and graphenes are presented in this work. There are mainly three parts, which are explained in more details as the followings:
    1. Single-walled carbon nanotube crystal: a new condensed form of SWNTs-crystal of SWNTs is obtained by using a series of diamond wire drawing dies. X-ray experiment indicates that the SWNTs arrange in a triangular lattice with a constant of 19.6 angstrom and the properties of SWNT crystal are studied.
    2. SWNT energy conversion devices and self-powered system: We show that the water inside SWNT can be driven to… More >

  • Open Access

    ABSTRACT

    Study of Poisson's Ratios of Graphene and Single-Walled Carbon Nanotubes Based on an Improved Molecular Structural Mechanics Model

    P. Zhao, G. Shi

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.1, pp. 13-14, 2011, DOI:10.3970/icces.2011.018.013

    Abstract The Poisson's ratios of a single layered graphene sheet and single-walled carbon nanotubes (SWCNTs) are computed using an improved equivalent structural mechanics model where the bond angle variations are modeled by the flexible connections of framed structures. The accuracy of the results given by the present model is evaluated by comparing the predicted results with the experimental data and the theoretical and computational results reported in the literature. It is shown that the Poisson's ratios given by the present computational model agree with the experimental data. The present result shows that the Poisson's ratios of both graphene and SWCNTs are… More >

  • Open Access

    ARTICLE

    Functionalised Poly(Vinyl Alcohol)/Graphene Oxide as Polymer Composite Electrolyte Membranes

    O. Gil-Castell1,2, R. Cerveró1, R. Teruel-Juanes1, J. D. Badia1,2, A. Ribes-Greus1,*

    Journal of Renewable Materials, Vol.7, No.7, pp. 655-665, 2019, DOI:10.32604/jrm.2019.04401

    Abstract Crosslinked poly(vinyl alcohol) (PVA) based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells (DEFC). The membranes were functionalised by means of the addition of graphene oxide (GO) and sulfonated graphene oxide (SGO) and crosslinked with sulfosuccinic acid (SSA). The chemical structure was corroborated and suitable thermal properties were found. Although the addition of GO and SGO slightly decreased the proton conductivity of the membranes, a significant reduction of the ethanol solution swelling and crossover was encountered, more relevant for those functionalised with SGO. In general, the composite membranes were stable under simulated service conditions.… More >

  • Open Access

    ARTICLE

    Graphene-Based 3D Xerogel as Adsorbent for Removal of Heavy Metal Ions from Industrial Wastewater

    Purnendu, Soumitra Satapathi*

    Journal of Renewable Materials, Vol.5, No.2, pp. 96-102, 2017, DOI:10.7569/JRM.2016.634134

    Abstract Graphene-based 3D porous xerogel was designed through molecular self-assembly of graphene oxide on chitosan matrix and its application in removal of different heavy metal ions from wastewater was investigated. The synthesized xerogel was characterized through FTIR, SEM, XRD and BET surface area analysis. Heavy metal ions, including Pb(II), Cd(II), and Hg(II), were removed from wastewater using this graphene-chitosan (GO-Cs) xerogel and the removal efficiency was monitored through inductively coupled plasma mass spectrometry (ICP-MS). The effect of GO-Cs composition and pH on adsorption efficiency as well as the kinetics of adsorption was studied in detail. The study exhibited that this xerogel… More >

  • Open Access

    ARTICLE

    Structural and Optical Properties of Graphene Oxide Prepared by Modified Hummers’ Method

    N. Selvakumar1,2, Uday Pradhan1, S.B. Krupanidhi2, Harish C. Barshilia1,*

    CMC-Computers, Materials & Continua, Vol.52, No.3, pp. 175-185, 2016, DOI:10.3970/cmc.2016.052.173

    Abstract Graphene oxide was synthesized from graphite flakes using modified Hummers’ method. The interlayer spacings of graphite, graphite oxide and graphene oxide were measured using X-ray diffraction technique. The C/O atomic ratios of graphite oxide and graphene oxide were calculated from XPS measurements. The transformation of graphite to graphite oxide and finally to graphene oxide was clearly observed from the micro-Raman spectroscopy data and was confirmed from the FESEM micrographs. UV-VIS-NIR spectrophotometer was used to study the absorbance of graphene oxide and reduced graphene oxide samples. Finally, the chemically reduced graphene oxide was heat-treated in air to obtain chemically modified graphene. More >

  • Open Access

    ARTICLE

    Metamaterial Inspired Radar Absorbers: Emergence, Trends and Challenges

    Anusha Eldo1, Balamati Choudhury2

    CMC-Computers, Materials & Continua, Vol.52, No.3, pp. 143-157, 2016, DOI:10.3970/cmc.2016.052.142

    Abstract The advances in metamaterial science and technology have raised the expectations of camouflage or stealth researchers to one order higher in terms of absorption characteristics. As metamaterial inspired radar absorbing structures are proving themselves as a good candidate with near unity absorption, feasibility towards hardware realization is necessary. Hence an extensive literature survey of metamaterial inspired radar absorbing structure has been carried out and reported in this paper along with the challenges and material issues. The various types of metamaterial structures that can be used as absorber have been provided along with simulation figures. To make the review more useful,… More >

  • Open Access

    ARTICLE

    Detection of Graphene Cracks By Electromagnetic Induction, Insensitive to Doping Level

    Taeshik Yoon1,†, Sumin Kang1,†, Tae Yeob Kang1, Taek-Soo Kim1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 351-361, 2019, DOI:10.32604/cmes.2019.06672

    Abstract Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality. Here, we show a detection method for graphene cracks by electromagnetic induction. The time varying magnetic field leads to induced voltage signals on graphene, and the signals are detected by a voltmeter. The measured level of induced voltage is correlated with the number of cracks in graphene positively. The correlation is attributed to the increasing inductive characteristic of defective graphene, and it is verified by electromagnetic simulation and radio frequency analysis. Furthermore, we demonstrate that the induced voltage signal is… More >

  • Open Access

    ARTICLE

    Ab initio Molecular Dynamics of H2 Dissociative Adsorption on Graphene Surfaces

    Kentaro Doi1,2, Ikumi Onishi1, Satoyuki Kawano1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 113-136, 2011, DOI:10.3970/cmes.2011.077.113

    Abstract Hydrogen technologies are currently one of the most actively researched topics. A lot of researches have tied to enhance their energy conversion efficiencies. In the present study, numerical analyses have been carried out focusing on hydrogen-storage carbon materials which are expected to realize high gravimetric and volumetric capacities. In particular, dissociative adsorption processes of H2 molecules above graphene surfaces have been investigated by ab initio molecular dynamics. The present results indicate that a steric graphene surface plays an important role in enhancing the charge transfer which induces dissociation of H2 and adsorption of H atoms on the surface. The dissociation… More >

  • Open Access

    ARTICLE

    A New Molecular Structural Mechanics Model for the Flexural Analysis of Monolayer Graphene

    G. Shi 1, P. Zhao 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.1, pp. 67-92, 2011, DOI:10.3970/cmes.2011.071.067

    Abstract Based on molecular mechanics and the concept of flexible connection used in the flexibly connected frames, a new structural mechanics model, a 2-D frame composed of anisotropic beams and flexible connections, is proposed for the simulation of the static and dynamic flexural behavior of monolayer graphene. The equivalent beam representing the C-C bond in the new molecular structural mechanics (MSM) model has two salient features compared with other MSM models presented for the analysis of carbon nanotubes: one is that the flexible connections at the beam ends are used to account for the bond-angle variations between the C-C bonds of… More >

Displaying 31-40 on page 4 of 47. Per Page