Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (124)
  • Open Access

    ARTICLE

    Development of Heat Input Estimation Technique for Simulation of Shell Forming by Line-Heating

    N. Osawa1, K. Hashimoto1, J. Sawamura1, J. Kikuchi2, Y. Deguchi2, T. Yamaura2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.1, pp. 43-54, 2007, DOI:10.3970/cmes.2007.020.043

    Abstract A new hypothesis regarding heat transmission during line heating is proposed. It states that the distribution of the temperature of the gas adjacent to the plate, TG, and the overall local heat transfer coefficient, α, depend only on the distance from the torch. An identification technique for TG and α is developed. The validity of the employed hypothesis and the proposed technique is demonstrated by comparing the measured and identified TG during a spot heating test. The plate temperature calculated by direct heat conduction analysis closely approximates the one measured for the spot and line heating tests, More >

  • Open Access

    ARTICLE

    Thermomechanical Analysis of Functionally Graded Composites under Laser Heating by the MLPG Method

    H. K. Ching1,2, J. K. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 199-218, 2006, DOI:10.3970/cmes.2006.013.199

    Abstract The Meshless Local Petrov-Galerkin (MLPG) method is a novel numerical approach similar to finite element methods, but it allows the construction of the shape function and domain discretization without defining elements. In this study, the MLPG analysis for transient thermomechanical response of a functionally graded composite heated by Gaussian laser beams is presented. The composite is modeled as a 2-D strip which consists of metal and ceramic phases with the volume fraction varying over the thickness. Two sets of the micromechanical models are employed for evaluating the effective material properties, respectively. Numerical results are presented More >

  • Open Access

    ARTICLE

    Thermocapillary Effects in Systems with Variable Liquid Mass Exposed to Concentrated Heating

    M.El-Gammal1, J.M.Floryan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 17-26, 2006, DOI:10.3970/fdmp.2006.002.017

    Abstract Interface deformation and thermocapillary rupture in a cavity with free upper surface subject to concentrated heating from above is investigated. The dynamics of the process is modulated by placing different amounts of liquid in the cavity. The results determined for large Biot and zero Marangoni numbers show the existence of limit points beyond which steady, continuous interface cannot exist and processes leading to the interface rupture develop. Evolution of the limit point as a function of the mass of the liquid is investigated. The topology of the flow field is found to be qualitatively similar, More >

  • Open Access

    ARTICLE

    On the Nature and Structure of Possible Three-dimensional Steady Flows in Closed and Open Parallelepipedic and Cubical Containers under Different Heating Conditions and Driving Forces.

    Marcello Lappa1, 2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 1-20, 2005, DOI:10.3970/fdmp.2005.001.001

    Abstract Possible natural transport mechanisms in cubical and shallow cavities with different heating conditions (from below or from the side) are investigated by means of numerical solution of the non-linear model equations and multiprocessor computations. Attention is focused on a variety of three-dimensional steady effects that can arise in such configurations in the case of low-Pr liquids (silicon melt) even for relatively small values of the temperature gradient due to localized boundary effects and/or true instabilities of the flow. Such aspects are still poorly known or completely ignored owing to the fact that most of the More >

Displaying 121-130 on page 13 of 124. Per Page