Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    A Novel Privacy‐Preserving Multi‐Attribute Reverse Auction Scheme with Bidder Anonymity Using Multi‐Server Homomorphic Computation

    Wenbo Shi1, Jiaqi Wang2, Jinxiu Zhu3, YuPeng Wang4, Dongmin Choi5

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 171-181, 2019, DOI:10.31209/2018.100000053

    Abstract With the further development of Internet, the decision-making ability of the smart service is getting stronger and stronger, and the electronic auction is paid attention to as one of the ways of decision system. In this paper, a secure multi-attribute reverse auction protocol without the trusted third party is proposed. It uses the Paillier public key cryptosystem with homomorphism and combines with oblivious transfer and anonymization techniques. A single auction server easily collides with a bidder, in order to solve this problem, a single auction server is replaced with multiple auction servers. The proposed scheme More >

  • Open Access

    ARTICLE

    A Privacy Preserving Deep Linear Regression Scheme Based on Homomorphic Encryption

    Danping Dong1, *, Yue Wu1, Lizhi Xiong1, Zhihua Xia1

    Journal on Big Data, Vol.1, No.3, pp. 145-150, 2019, DOI:10.32604/jbd.2019.08706

    Abstract This paper proposes a strategy for machine learning in the ciphertext domain. The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption, and then trained in the ciphertext domain. At the same time, it is guaranteed that the error of the training results between the ciphertext domain and the plaintext domain is in a controllable range. After the training, the ciphertext can be decrypted and restored to the original plaintext training data. More >

  • Open Access

    ARTICLE

    Achieving Privacy-Preserving Iris Identification Via El Gamal

    Yong Ding1, Lei Tian1, Bo Han2, Huiyong Wang2,*, Yujue Wang1, James Xi Zheng3

    CMC-Computers, Materials & Continua, Vol.61, No.2, pp. 727-738, 2019, DOI:10.32604/cmc.2019.06220

    Abstract Currently, many biometric systems maintain the user’s biometrics and templates in plaintext format, which brings great privacy risk to uses’ biometric information. Biometrics are unique and almost unchangeable, which means it is a great concern for users on whether their biometric information would be leaked. To address this issue, this paper proposes a confidential comparison algorithm for iris feature vectors with masks, and develops a privacy-preserving iris verification scheme based on the El Gamal encryption scheme. In our scheme, the multiplicative homomorphism of encrypted features is used to compare of iris features and their mask More >

  • Open Access

    ARTICLE

    A Cryptograph Domain Image Retrieval Method Based on Paillier Homomorphic Block Encryption

    Wenjia Xu1, Shijun Xiang1,*, Vasily Sachnev2

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 285-295, 2018, DOI:10.3970/cmc.2018.01719

    Abstract With the rapid development of information network, the computing resources and storage capacity of ordinary users cannot meet their needs of data processing. The emergence of cloud computing solves this problem but brings data security problems. How to manage and retrieve ciphertext data effectively becomes a challenging problem. To these problems, a new image retrieval method in ciphertext domain by block image encrypting based on Paillier homomophic cryptosystem is proposed in this paper. This can be described as follows: According to the Paillier encryption technology, the image owner encrypts the original image in blocks, obtains… More >

Displaying 31-40 on page 4 of 34. Per Page