Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (732)
  • Open Access


    Research on Hybrid Model of Garlic Short-term Price Forecasting based on Big Data

    Baojia Wang1, Pingzeng Liu1,*, Zhang Chao1, Wang Junmei1, Weijie Chen1, Ning Cao2, Gregory M.P. O’Hare3, Fujiang Wen1

    CMC-Computers, Materials & Continua, Vol.57, No.2, pp. 283-296, 2018, DOI:10.32604/cmc.2018.03791

    Abstract Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices. The autoregressive integrated moving average (ARIMA) model is currently the most important method for predicting garlic prices. However, the ARIMA model can only predict the linear part of the garlic prices, and cannot predict its nonlinear part. Therefore, it is urgent to adopt a method to analyze the nonlinear characteristics of garlic prices. After comparing the advantages and disadvantages of several major prediction models which used to forecast nonlinear time series, using support vector machine (SVM) model to predict… More >

  • Open Access


    Minimizing Thermal Residual Stress in Ni/Al2O3 Functionally Graded Material Plate by Volume Fraction Optimization

    Xing Wei1,2, Wen Chen1,3, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 1-23, 2015, DOI:10.3970/cmc.2015.048.001

    Abstract The thermal residual stress in the fabrication of functionally graded material (FGM) systems can give rise to various mechanical failures. For a FGM system under a given fabrication environment, the thermal residual stresses are determined by the spatial distribution of its constituent components. In this study, we optimize a Ni/Al2O3 FGM plate aiming at minimizing the thermal residual stresses through controlling its compositional distribution. Material properties are graded in the thickness direction following a power law distribution in terms of the volume fractions of constituents (P-FGM). An analytical model and a hybrid genetic algorithm with the More >

  • Open Access


    Mechanical Analysis of 3D Composite Materials by Hybrid Boundary Node Method

    Yu Miao1, Zhe Chen1, Qiao Wang1,2, Hongping Zhu1

    CMC-Computers, Materials & Continua, Vol.43, No.1, pp. 49-74, 2014, DOI:10.3970/cmc.2014.043.049

    Abstract In this paper, an improved multi-domain model based on the hybrid boundary node method (Hybrid BNM) is proposed for mechanical analysis of 3D composites. The Hybrid BNM is a boundary type meshless method which based on the modified variational principle and the Moving Least Squares (MLS) approximation. The improved multi-domain model can reduce the total degrees of freedom (DOFs) compared with the conventional multi-domain solver. It is very suitable for the inclusion-based composites, especially for the composites when the inclusions are solid and totally embedded in the matrix domain. Numerical examples are presented to verify More >

  • Open Access


    Influence of Stress Singularities on Scaling of Fracture of Metal-Composite Hybrid Structures

    Jia-Liang Le1, Bing Xue1

    CMC-Computers, Materials & Continua, Vol.34, No.3, pp. 251-264, 2013, DOI:10.3970/cmc.2013.034.251

    Abstract It has been recently shown that the nominal structural strength of metal-composite structures depends on the structure size, and such dependence is strongly influenced by the stress singularities. Nevertheless, previous studies only focused on structures that exhibit very strong stress singularities, which are close to the crack-like stress singularity. In the actual engineering designs, due to the mismatch of material properties and complex structural geometries, many metalcomposite structures may contain stress singularities that are much weaker than the crack-like stress singularity. This paper presents a numerical study on the size dependence of scaling of fracture… More >

  • Open Access


    Non-Deterministic Structural Response and Reliability Analysis Using a Hybrid Perturbation-Based Stochastic Finite Element and Quasi-Monte Carlo Method

    C. Wang1, W. Gao1, C.W. Yang1, C.M. Song1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 19-46, 2011, DOI:10.3970/cmc.2011.025.019

    Abstract The random interval response and probabilistic interval reliability of structures with a mixture of random and interval properties are studied in this paper. Structural stiffness matrix is a random interval matrix if some structural parameters and loads are modeled as random variables and the others are considered as interval variables. The perturbation-based stochastic finite element method and random interval moment method are employed to develop the expressions for the mean value and standard deviation of random interval structural displacement and stress responses. The lower bound and upper bound of the mean value and standard deviation More >

  • Open Access


    A Simple Procedure to Develop Efficient & Stable Hybrid/Mixed Elements, and Voronoi Cell Finite Elements for Macro- & Micromechanics

    L. Dong1, S. N. Atluri2

    CMC-Computers, Materials & Continua, Vol.24, No.1, pp. 61-104, 2011, DOI:10.3970/cmc.2011.024.061

    Abstract A simple procedure to formulate efficient and stable hybrid/mixed finite elements is developed, for applications in macro- as well as micromechanics. In this method, the strain and displacement field are independently assumed. Instead of using two-field variational principles to enforce both equilibrium and compatibility conditions in a variational sense, the independently assumed element strains are related to the strains derived from the independently assumed element displacements, at a finite number of collocation points within the element. The element stiffness matrix is therefore derived, by simply using the principle of minimum potential energy. Taking the four-node… More >

  • Open Access


    Estimation of Natural-Convection Heat-Transfer Characteristics from Vertical Fins Mounted on a Vertical Plate

    H. T. Chen1,K. H. Hsu1, S. K. Lee1, L. Y. Haung1

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 239-260, 2011, DOI:10.3970/cmc.2011.022.239

    Abstract The inverse scheme of the finite difference method in conjunction with the least-squares scheme and experimental measured temperatures is proposed to solve a two-dimensional steady-state inverse heat conduction problem in order to estimate the natural-convection heat transfer coefficient under the isothermal situation [`h] iso from three vertical fins mounted on a vertical plate and fin efficiency hf for various values of the fin spacing and fin height. The measured fin temperatures and ambient air temperature are measured from the present experimental apparatus conducted in a small wind tunnel. The heat transfer coefficient on the middle More >

  • Open Access


    Hybrid Finite Element Method Based on Novel General Solutions for Helmholtz-Type Problems

    Zhuo-Jia Fu1,2, Wen Chen1, Qing-Hua Qin2,3

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 187-208, 2011, DOI:10.3970/cmc.2011.021.187

    Abstract This paper presents a hybrid finite element model (FEM) with a new type of general solution as interior trial functions, named as HGS-FEM. A variational functional corresponding to the proposed general solution is then constructed for deriving the element stiffness matrix of the proposed element model and the corresponding existence of extremum is verified. Then the assumed intra-element potential field is constructed by a linear combination of novel general solutions at the points on the element boundary under consideration. Furthermore, the independent frame field is introduced to guarantee the intra-element continuity. The present scheme inherits More >

  • Open Access


    Parameter Identification Method of Large Macro-Micro Coupled Constitutive Models Based on Identifiability Analysis

    Jie Qu1,2, Bingye Xu3, Quanlin Jin4

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 119-158, 2010, DOI:10.3970/cmc.2010.020.119

    Abstract Large and complex macro-micro coupled constitutive models, which describe metal flow and microstructure evolution during metal forming, are sometimes overparameterized with respect to given sets of experimental datum. This results in poorly identifiable or non-identifiable model parameters. In this paper, a systemic parameter identification method for the large macro-micro coupled constitutive models is proposed. This method is based on the global and local identifiability analysis, in which two identifiability measures are adopted. The first measure accounts for the sensitivity of model results with respect to single parameters, and the second measure accounts for the degree… More >

  • Open Access


    Modeling of Moisture Diffusion in Heterogeneous Epoxy Resin Containing Multiple Randomly Distributed Particles Using Hybrid Moisture Element Method

    De-Shin Liu1, Zhen-Wei Zhuang1,2, Cho-LiangChung3, Ching-Yang Chen4

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 89-114, 2009, DOI:10.3970/cmc.2009.013.089

    Abstract This paper employs a novel numerical technique, designated as the hybrid moisture element method (HMEM), to model and analyze moisture diffusion in a heterogeneous epoxy resin containing multiple randomly distributed particles. The HMEM scheme is based on a hybrid moisture element (HME), whose properties are determined by equivalent moisture capacitance and conductance matrixes calculated using the conventional finite element formulation. A coupled HME-FE scheme is developed and implemented using the commercial FEM software ABAQUS. The HME-FE scheme is then employed to analyze the moisture diffusion characteristics of a heterogeneous epoxy resin layer containing particle inclusions. The… More >

Displaying 721-730 on page 73 of 732. Per Page