Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for PM2.5 Concentration Prediction in Smart Environmental Monitoring

    Minh Thanh Vo1, Anh H. Vo2, Huong Bui3, Tuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3029-3041, 2023, DOI:10.32604/iasc.2023.034636 - 15 March 2023

    Abstract Nowadays, air pollution is a big environmental problem in developing countries. In this problem, particulate matter 2.5 (PM2.5) in the air is an air pollutant. When its concentration in the air is high in developing countries like Vietnam, it will harm everyone’s health. Accurate prediction of PM2.5 concentrations can help to make the correct decision in protecting the health of the citizen. This study develops a hybrid deep learning approach named PM25-CBL model for PM2.5 concentration prediction in Ho Chi Minh City, Vietnam. Firstly, this study analyzes the effects of variables on PM2.5 concentrations in… More >

  • Open Access

    ARTICLE

    Gender Identification Using Marginalised Stacked Denoising Autoencoders on Twitter Data

    Badriyya B. Al-onazi1, Mohamed K. Nour2, Hassan Alshamrani3, Mesfer Al Duhayyim4,*, Heba Mohsen5, Amgad Atta Abdelmageed6, Gouse Pasha Mohammed6, Abu Sarwar Zamani6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2529-2544, 2023, DOI:10.32604/iasc.2023.034623 - 15 March 2023

    Abstract Gender analysis of Twitter could reveal significant socio-cultural differences between female and male users. Efforts had been made to analyze and automatically infer gender formerly for more commonly spoken languages’ content, but, as we now know that limited work is being undertaken for Arabic. Most of the research works are done mainly for English and least amount of effort for non-English language. The study for Arabic demographic inference like gender is relatively uncommon for social networking users, especially for Twitter. Therefore, this study aims to design an optimal marginalized stacked denoising autoencoder for gender identification… More >

  • Open Access

    ARTICLE

    Short Term Traffic Flow Prediction Using Hybrid Deep Learning

    Mohandu Anjaneyulu, Mohan Kubendiran*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1641-1656, 2023, DOI:10.32604/cmc.2023.035056 - 06 February 2023

    Abstract Traffic flow prediction in urban areas is essential in the Intelligent Transportation System (ITS). Short Term Traffic Flow (STTF) prediction impacts traffic flow series, where an estimation of the number of vehicles will appear during the next instance of time per hour. Precise STTF is critical in Intelligent Transportation System. Various extinct systems aim for short-term traffic forecasts, ensuring a good precision outcome which was a significant task over the past few years. The main objective of this paper is to propose a new model to predict STTF for every hour of a day. In… More >

  • Open Access

    ARTICLE

    Optimal Hybrid Deep Learning Enabled Attack Detection and Classification in IoT Environment

    Fahad F. Alruwaili*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 99-115, 2023, DOI:10.32604/cmc.2023.034752 - 06 February 2023

    Abstract The Internet of Things (IoT) paradigm enables end users to access networking services amongst diverse kinds of electronic devices. IoT security mechanism is a technology that concentrates on safeguarding the devices and networks connected in the IoT environment. In recent years, False Data Injection Attacks (FDIAs) have gained considerable interest in the IoT environment. Cybercriminals compromise the devices connected to the network and inject the data. Such attacks on the IoT environment can result in a considerable loss and interrupt normal activities among the IoT network devices. The FDI attacks have been effectively overcome so… More >

  • Open Access

    ARTICLE

    Xception-Fractalnet: Hybrid Deep Learning Based Multi-Class Classification of Alzheimer’s Disease

    Mudiyala Aparna, Battula Srinivasa Rao*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6909-6932, 2023, DOI:10.32604/cmc.2023.034796 - 28 December 2022

    Abstract Neurological disorders such as Alzheimer’s disease (AD) are very challenging to treat due to their sensitivity, technical challenges during surgery, and high expenses. The complexity of the brain structures makes it difficult to distinguish between the various brain tissues and categorize AD using conventional classification methods. Furthermore, conventional approaches take a lot of time and might not always be precise. Hence, a suitable classification framework with brain imaging may produce more accurate findings for early diagnosis of AD. Therefore in this paper, an effective hybrid Xception and Fractalnet-based deep learning framework are implemented to classify… More >

  • Open Access

    ARTICLE

    Automated Arabic Text Classification Using Hyperparameter Tuned Hybrid Deep Learning Model

    Badriyya B. Al-onazi1, Saud S. Alotaib2, Saeed Masoud Alshahrani3,*, Najm Alotaibi4, Mrim M. Alnfiai5, Ahmed S. Salama6, Manar Ahmed Hamza7

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5447-5465, 2023, DOI:10.32604/cmc.2023.033564 - 28 December 2022

    Abstract The text classification process has been extensively investigated in various languages, especially English. Text classification models are vital in several Natural Language Processing (NLP) applications. The Arabic language has a lot of significance. For instance, it is the fourth mostly-used language on the internet and the sixth official language of the United Nations. However, there are few studies on the text classification process in Arabic. A few text classification studies have been published earlier in the Arabic language. In general, researchers face two challenges in the Arabic text classification process: low accuracy and high dimensionality… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Model for Real Time Hand Gestures Recognition

    S. Gnanapriya1,*, K. Rahimunnisa2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1105-1119, 2023, DOI:10.32604/iasc.2023.032832 - 29 September 2022

    Abstract The performance of Hand Gesture Recognition (HGR) depends on the hand shape. Segmentation helps in the recognition of hand gestures for more accuracy and improves the overall performance compared to other existing deep neural networks. The crucial segmentation task is extremely complicated because of the background complexity, variation in illumination etc. The proposed modified UNET and ensemble model of Convolutional Neural Networks (CNN) undergoes a two stage process and results in proper hand gesture recognition. The first stage is segmenting the regions of the hand and the second stage is gesture identification. The modified UNET More >

  • Open Access

    ARTICLE

    Real-Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning Technique

    Javed Rashid1,2, Imran Khan1, Ghulam Ali3, Shafiq ur Rehman4, Fahad Alturise5, Tamim Alkhalifah5,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1235-1257, 2023, DOI:10.32604/cmc.2023.032005 - 22 September 2022

    Abstract The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments, soil conditions and higher human consumption. It is cultivated in vast areas of Asian and Non-Asian countries, including Pakistan. The guava plant is vulnerable to diseases, specifically the leaves and fruit, which result in massive crop and profitability losses. The existing plant leaf disease detection techniques can detect only one disease from a leaf. However, a single leaf may contain symptoms of multiple diseases. This study has proposed a hybrid deep learning-based framework for the real-time detection… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Improved BAT Optimization Algorithm for Soil Classification Using Hyperspectral Features

    S. Prasanna Bharathi1,2, S. Srinivasan1,*, G. Chamundeeswari1, B. Ramesh1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 579-594, 2023, DOI:10.32604/csse.2023.027592 - 16 August 2022

    Abstract Now a days, Remote Sensing (RS) techniques are used for earth observation and for detection of soil types with high accuracy and better reliability. This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics. There are a few challenges that is present in soil classification using image enhancement such as, locating and plotting soil boundaries, slopes, hazardous areas, drainage condition, land use, vegetation etc. There are some traditional approaches which involves few drawbacks such as, manual involvement which results in inaccuracy due to human interference, time… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Method for Diagnosis of Cucurbita Leaf Diseases

    V. Nirmala1,*, B. Gomathy2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2585-2601, 2023, DOI:10.32604/csse.2023.027512 - 01 August 2022

    Abstract In agricultural engineering, the main challenge is on methodologies used for disease detection. The manual methods depend on the experience of the personal. Due to large variation in environmental condition, disease diagnosis and classification becomes a challenging task. Apart from the disease, the leaves are affected by climate changes which is hard for the image processing method to discriminate the disease from the other background. In Cucurbita gourd family, the disease severity examination of leaf samples through computer vision, and deep learning methodologies have gained popularity in recent years. In this paper, a hybrid method More >

Displaying 31-40 on page 4 of 60. Per Page