Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    VIEWPOINT

    Mesenchymal stem cells, secretome and biomaterials in in-vivo animal models: Regenerative medicine application in cutaneous wound healing

    MASSIMO CONESE1,*, AURELIO PORTINCASA2

    BIOCELL, Vol.46, No.8, pp. 1815-1826, 2022, DOI:10.32604/biocell.2022.019448 - 22 April 2022

    Abstract The treatment of nonhealing and chronic cutaneous wounds still needs a clinical advancement to be effective. Both mesenchymal stem cells (MSCs), obtained from different sources, and their secretome derived thereof (especially exosomes) can activate signaling pathways related to promotion of cell migration, vascularization, collagen deposition, and inflammatory response demonstrating prohealing, angiogenetic and anti-scarring capacities. On the other hand, biodegradable biomimetic scaffolds can facilitate endogenous cell attachment and proliferation as well as extracellular matrix production. In this Review, we revise the complex composites made by biomimetic scaffolds, mainly hydrogels, and MSC-derived exosomes constructed for cutaneous wound More >

  • Open Access

    ARTICLE

    Development of Magnetite/Graphene Oxide Hydrogels from Agricultural Wastes for Water Treatment

    Hebat-Allah S. Tohamy, Mohamed El-Sakhawy, Samir Kamel*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1889-1909, 2022, DOI:10.32604/jrm.2022.019211 - 08 March 2022

    Abstract A novel magnetic hydrogel loaded with graphene oxide (GO) was developed in this study. Firstly, GO was prepared from bagasse through a single step via oxidation in the presence of ferrocene under muffled atmospheric conditions, followed by the loading of different amounts of magnetite onto GO via co-precipitation reaction of iron onto GO sheets. Finally, the 2-acrylamido-2-methyl-1-propane sulfonic acid was grafted onto carboxymethyl cellulose in the presence of magnetite GO and N, N′-methylenebisacrylamide as crosslinker yielded hydrogel. The structure, morphological, and thermal behavior of the prepared hydrogels were investigated. In addition, the adsorption performance of More > Graphic Abstract

    Development of Magnetite/Graphene Oxide Hydrogels from Agricultural Wastes for Water Treatment

  • Open Access

    ARTICLE

    Genipin Cross-linked Boron Doped Hydrogels: Evaluation of Biological Activities

    ELIF ANT BURSALI1,*, DILER ABACI1, MURAT KIZIL2, MURUVVET YURDAKOC1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 231-245, 2021, DOI:10.32381/JPM.2021.38.3-4.5

    Abstract Genipin cross-linked/boron doped starch/polyvinily alcohol (PVA) based hydrogel (SH-GNP-B) was synthesized as a new material having antimicrobial and antioxidant activity. The prepared hydrogel was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM) methods and evaluated for in vitro antimicrobial activities against selected organisms by disc diffusion tests. The antioxidant activity of the prepared hydrogels was evaluated using 2,2-diphenyl-1- picrylhydrazyl radical scavenging assays. Swelling behavior of the hydrogel was also investigated. The synthesized hydrogel was thermally stable and showed pH independent swelling tendency. SH-GNP-B hydrogel More >

  • Open Access

    ARTICLE

    The Influence of Entanglements of Net Chains on Phase Transition Temperature of Sensitive Hydrogels in Chemo-Mechanical Coupled Fields

    Tao Li1, Qingsheng Yang1, *, Lianhua Ma2, Xiaojun Zhang2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 995-1014, 2020, DOI:10.32604/cmes.2020.09152 - 28 May 2020

    Abstract Phase transition of hydrogel, which is polymerized by polymer network, can be regarded as the transition of polymer network stability. The stability of the polymer network might be changed when the external environment changed. This change will lead to the transformation of sensitive hydrogels stability, thus phase transition of hydrogel take place. Here, we present a new free density energy function, which considers the non-gaussianity of the polymer network, chains entanglement and functionality of junctions through adding Gent hyplastic model and Edwards-Vilgis slip-link model to Flory-Huggins theory. A program to calculate the phase transition temperature More >

  • Open Access

    ARTICLE

    Poly (vinyl alcohol)/Graphene Nanocomposite Hydrogel Scaffolds for Control of Cell Adhesion

    Xiaodong Wang1,2, Meng Su2, Chuntai Liu2, Changyu Shen2, Xianhu Liu2,*

    Journal of Renewable Materials, Vol.8, No.1, pp. 89-99, 2020, DOI:10.32604/jrm.2020.08493 - 01 January 2020

    Abstract Poly (vinyl alcohol) (PVA)/reduced graphene oxide (rGO) nanocomposites is prepared by the immersion of PVA/graphene oxide (GO) nanocomposites in the reducing agent aqueous solution. The PVA/graphene nanocomposites can be used as scaffold after treatment by chemical crosslinking agents. The surface hydrophilicity of the nanocomposite scaffolds decreased with the addition of GO or rGO by measuring the contact angles of scaffolds. The electrical conductivity of PVA/rGO nanocomposite scaffold increased with rGO content increased. The highest conductivity of PVA/rGO nanocomposite scaffolds with 10 wt% rGO could reach to 12.16 × 10−3 S/m. The NIH-3T3 fibroblasts attach and grow More >

  • Open Access

    ARTICLE

    Functionalized 2-(hydroxyethyl) methacrylate (HEMA)- co-acrylamide (AAm) hydrogels: Kinetic and Isotherm Modelling Analysis on the Removal of Cu(II) Ions

    AYÇA BAL ÖZTÜRK1,2,*, ZEHRA ÖZBAŞ3, BENGİ ÖZKAHRAMAN4, SERKAN EMİK5

    Journal of Polymer Materials, Vol.36, No.2, pp. 161-173, 2019, DOI:10.32381/JPM.2019.36.02.5

    Abstract A functionalized hydrogel composed of 2-(hydroxyethyl) methacrylate (HEMA) and acrylamide (AAm) was synthesized by amination and saponification reactions, respectively, and its functionality was examined for the elimination of copper(II) ions. The maximum adsorption capacity for copper(II) ions was 0.617 mmol g-1 before saponification, whereas it was 1.2225 mmol g-1 after saponification. The adsorption data was analyzed with pseudo-first-order (r2 =0.8867), intra-particle diffusion (r2 =0.9453), Elovich (r2=0.9489) and pseudo-secondorder(r2 =0.9999) kinetic models. Based on the adsorption equilibrium experimental data Freundlich(r2 =0.9964), Langmuir(r2=0.998) and Dubinin–Radushkevich (D-R) (r2 =0.9960) adsorption isotherms provided good fits for all of experimental results. Finally, the datas of More >

  • Open Access

    ARTICLE

    Influence of Xyloglucan Molar Mass on Rheological Properties of Cellulose Nanocrystal/Xyloglucan Hydrogels

    Malika Talantikite1,*, Antoine Gourlay1, Sophie Le Gall1, Bernard Cathala1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1381-1390, 2019, DOI:10.32604/jrm.2019.07838

    Abstract Plant components are an inexhaustible source for the construction of bio-based materials. Here we report, for the first time, the elaboration of biobased cellulose nanocrystals (CNC)/xyloglucan (XG) hydrogels. XG is a hemicellulose displaying a great affinity for cellulose surface and can be thus irreversibly adsorbed on CNC. Properties of the hydrogels were investigated by varying the molar mass of XG either by enzymatic treatment with Endoglucanase (EG2) or physical fractionation by ultrasound (US). Fractions were characterised by high-performance size exclusion chromatography (HPSEC) and their monosacchari decompositions were determined. Three fractions with high, average and small… More >

  • Open Access

    ABSTRACT

    Rationally Designed Synthetic Protein Hydrogels with Predictable and Controllable Mechanical Properties

    Ying Li1, Bin Xue2, Wenxu Sun2, Junhua Wu2, Wenting Yu2, Meng Qin2, Wei Wang2, Yi Cao2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 147-147, 2019, DOI:10.32604/mcb.2019.07027

    Abstract A key challenge in biomaterials research is to produce synthetic hydrogels that can replicate the diverse mechanical properties of the naturally occurring tissues for various biomedical applications, including tissue engineering, stem cell and cancer research, cell therapy, and immunomodulation. However, currently, the methods that can be used to control the mechanical properties of hydrogels are very limited and are mainly focused only on the elasticity of hydrogels. In this work, combining single molecule force spectroscopy, protein engineering and theoretical modeling, we show that synthetic protein hydrogels with predictable mechanical properties can be rationally designed using… More >

  • Open Access

    ABSTRACT

    Hydrogels with Enhanced Biomechanical and Mechanobiological Properties

    Dominique P. Pioletti1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 29-30, 2019, DOI:10.32604/mcb.2019.07050

    Abstract From a mechanical point of view, articular cartilage can be considered as a viscoelastic porous material. Its dissipation capabilities are therefore central for its functional behavior. Based on this observation, we focused our studies of dissipative aspects in cartilage either from a biomechanical or mechanobiological point of view. In particular, we capitalized on the new obtained insight of dissipative behavior or sources in materials for the development of functional biomaterials for cartilage tissue engineering. We pioneered in proposing dissipation as a mechanobiological variable for cartilage tissue engineering [1]. As can be observed on Fig. 1,… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Eco-friendly Carboxymethyl Cellulose Antimicrobial Nanocomposite Hydrogels

    Sawsan Dacrory1*, Hussein Abou-Yousef1, Ragab E. Abou-Zeid1, Samir Kamel1, Mohamed S. Abdel-Aziz2, Mohamed Elbadry3

    Journal of Renewable Materials, Vol.6, No.5, pp. 536-547, 2018, DOI:10.7569/JRM.2017.634190

    Abstract Carboxymethyl cellulose hydrogels were developed through crosslinking process using eco-friendly crosslinkers such as maleic, succinic, and citric acids. Carboxymethyl cellulose was prepared from the cellulosic fraction of olive industry residues. A series of hydrogels with varying crosslinker acid concentrations, reaction times, and reaction temperatures was produced to study the swelling capacities and gel fraction of the obtained hydrogels. Additional study pertains to the preparation of antimicrobial nanocomposite hydrogels through in-situ incorporation of the silver nanoparticles during the crosslinking reaction. Silver nanoparticles were prepared by reduction of AgNO3with leaves of Ricinus communis. The particle size of More >

Displaying 11-20 on page 2 of 24. Per Page