Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Shadow detection and correction using a combined 3D GIS and image processing approach

    Safa Ridene1 , Reda Yaagoubi1, Imane Sebari1, Audrey Alajouanine2

    Revue Internationale de Géomatique, Vol.29, No.3, pp. 241-253, 2019, DOI:10.3166/rig.2019.00091

    Abstract While shadow can give useful information about size and shape of objects, it can pose problems in feature detection and object detection, thereby, it represents one of the major perturbator phenomenons frequently occurring on images and unfortunately, it is inevitable. “Shadows may lead to the failure of image analysis processes and also cause a poor quality of information which in turn leads to problems in implementation of algorithms.” (Mahajan and Bajpayee, 2015). It also affects multiple image analysis applications, whereby shadow cast by buildings deteriorate the spectral values of the surfaces. Therefore, its presence causes a deterioration in the visual… More >

  • Open Access

    ARTICLE

    Fuzzy Rule-Based Model to Train Videos in Video Surveillance System

    A. Manju1, A. Revathi2, M. Arivukarasi1, S. Hariharan3, V. Umarani4, Shih-Yu Chen5,*, Jin Wang6

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 905-920, 2023, DOI:10.32604/iasc.2023.038444

    Abstract With the proliferation of the internet, big data continues to grow exponentially, and video has become the largest source. Video big data introduces many technological challenges, including compression, storage, transmission, analysis, and recognition. The increase in the number of multimedia resources has brought an urgent need to develop intelligent methods to organize and process them. The integration between Semantic link Networks and multimedia resources provides a new prospect for organizing them with their semantics. The tags and surrounding texts of multimedia resources are used to measure their semantic association. Two evaluation methods including clustering and retrieval are performed to measure… More >

  • Open Access

    ARTICLE

    Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation

    Muwei Jian1,2,#,*, Ronghua Wu1,#, Hongyu Chen1, Lanqi Fu3, Chengdong Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 705-716, 2023, DOI:10.32604/cmes.2023.027425

    Abstract In intelligent perception and diagnosis of medical equipment, the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases (e.g., diabetes and hypertension). Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results. To address this challenge, we design a Dual-Branch-UNet framework, which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation. To be more explicit, we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the original U-Net. Then, image… More >

  • Open Access

    REVIEW

    An Overview of Double JPEG Compression Detection and Anti-detection

    Kun Wan*

    Journal of Information Hiding and Privacy Protection, Vol.4, No.2, pp. 89-101, 2022, DOI:10.32604/jihpp.2022.039764

    Abstract JPEG (Joint Image Experts Group) is currently the most widely used image format on the Internet. Existing cases show that many tampering operations occur on JPEG images. The basic process of the operation is that the JPEG file is first decompressed, modified in the null field, and then the tampered image is compressed and saved in JPEG format, so that the tampered image may be compressed several times. Therefore, the double compression detection of JPEG images can be an important part for determining whether an image has been tampered with, and the study of double JPEG compression anti-detection can further… More >

  • Open Access

    ARTICLE

    Semantic Document Layout Analysis of Handwritten Manuscripts

    Emad Sami Jaha*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2805-2831, 2023, DOI:10.32604/cmc.2023.036169

    Abstract A document layout can be more informative than merely a document’s visual and structural appearance. Thus, document layout analysis (DLA) is considered a necessary prerequisite for advanced processing and detailed document image analysis to be further used in several applications and different objectives. This research extends the traditional approaches of DLA and introduces the concept of semantic document layout analysis (SDLA) by proposing a novel framework for semantic layout analysis and characterization of handwritten manuscripts. The proposed SDLA approach enables the derivation of implicit information and semantic characteristics, which can be effectively utilized in dozens of practical applications for various… More >

  • Open Access

    ARTICLE

    Identification of a Printed Anti-Counterfeiting Code Based on Feature Guidance Double Pool Attention Networks

    Changhui You1,2, Hong Zheng1,2,*, Zhongyuan Guo2, Tianyu Wang2, Jianping Ju3, Xi Li3

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3431-3452, 2023, DOI:10.32604/cmc.2023.035897

    Abstract The authenticity identification of anti-counterfeiting codes based on mobile phone platforms is affected by lighting environment, photographing habits, camera resolution and other factors, resulting in poor collection quality of anti-counterfeiting codes and weak differentiation of anti-counterfeiting codes for high-quality counterfeits. Developing an anti-counterfeiting code authentication algorithm based on mobile phones is of great commercial value. Although the existing algorithms developed based on special equipment can effectively identify forged anti-counterfeiting codes, the anti-counterfeiting code identification scheme based on mobile phones is still in its infancy. To address the small differences in texture features, low response speed and excessively large deep learning… More >

  • Open Access

    ARTICLE

    Embedded System Development for Detection of Railway Track Surface Deformation Using Contour Feature Algorithm

    Tarique Rafique Memon1,2,*, Tayab Din Memon3,4, Imtiaz Hussain Kalwar5, Bhawani Shankar Chowdhry1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2461-2477, 2023, DOI:10.32604/cmc.2023.035413

    Abstract Derailment of trains is not unusual all around the world, especially in developing countries, due to unidentified track or rolling stock faults that cause massive casualties each year. For this purpose, a proper condition monitoring system is essential to avoid accidents and heavy losses. Generally, the detection and classification of railway track surface faults in real-time requires massive computational processing and memory resources and is prone to a noisy environment. Therefore, in this paper, we present the development of a novel embedded system prototype for condition monitoring of railway track. The proposed prototype system works in real-time by acquiring railway… More >

  • Open Access

    ARTICLE

    Novel Vegetation Mapping Through Remote Sensing Images Using Deep Meta Fusion Model

    S. Vijayalakshmi*, S. Magesh Kumar

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2915-2931, 2023, DOI:10.32604/iasc.2023.034165

    Abstract Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions. It is challenging to determine vegetation using traditional map classification approaches. The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties. It is more demandable to determine the multiple spectral analyses for improving the accuracy of vegetation mapping through remotely sensed images. The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping. The architecture comprises three approaches, feature-based approach, region-based approach, and texture-based approach for classifying the vegetation… More >

  • Open Access

    ARTICLE

    Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images

    Ying Li1,2, Guanghong Gong1, Dan Wang1, Ni Li1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2237-2265, 2023, DOI:10.32604/cmes.2023.025193

    Abstract There are two types of methods for image segmentation. One is traditional image processing methods, which are sensitive to details and boundaries, yet fail to recognize semantic information. The other is deep learning methods, which can locate and identify different objects, but boundary identifications are not accurate enough. Both of them cannot generate entire segmentation information. In order to obtain accurate edge detection and semantic information, an Adaptive Boundary and Semantic Composite Segmentation method (ABSCS) is proposed. This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances. It includes adaptively dividing and modifying the… More > Graphic Abstract

    Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images

  • Open Access

    ARTICLE

    Cardiac CT Image Segmentation for Deep Learning–Based Coronary Calcium Detection Using K-Means Clustering and Grabcut Algorithm

    Sungjin Lee1, Ahyoung Lee2, Min Hong3,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2543-2554, 2023, DOI:10.32604/csse.2023.037055

    Abstract Specific medical data has limitations in that there are not many numbers and it is not standardized. to solve these limitations, it is necessary to study how to efficiently process these limited amounts of data. In this paper, deep learning methods for automatically determining cardiovascular diseases are described, and an effective preprocessing method for CT images that can be applied to improve the performance of deep learning was conducted. The cardiac CT images include several parts of the body such as the heart, lungs, spine, and ribs. The preprocessing step proposed in this paper divided CT image data into regions… More >

Displaying 1-10 on page 1 of 100. Per Page  

Share Link