Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Classification Similarity Network Model for Image Fusion Using Resnet50 and GoogLeNet

    P. Siva Satya Sreedhar1,*, N. Nandhagopal2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1331-1344, 2022, DOI:10.32604/iasc.2022.020918 - 09 October 2021

    Abstract The current trend in Image Fusion (IF) algorithms concentrate on the fusion process alone. However, pay less attention to critical issues such as the similarity between the two input images, features that participate in the Image Fusion. This paper addresses these two issues by deliberately attempting a new Image Fusion framework with Convolutional Neural Network (CNN). CNN has features like pre-training and similarity score, but functionalities are limited. A CNN model with classification prediction and similarity estimation are introduced as Classification Similarity Networks (CSN) to address these issues. ResNet50 and GoogLeNet are modified as the More >

  • Open Access

    ARTICLE

    A Saliency Based Image Fusion Framework for Skin Lesion Segmentation and Classification

    Javaria Tahir1, Syed Rameez Naqvi2,*, Khursheed Aurangzeb3, Musaed Alhussein3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3235-3250, 2022, DOI:10.32604/cmc.2022.018949 - 27 September 2021

    Abstract Melanoma, due to its higher mortality rate, is considered as one of the most pernicious types of skin cancers, mostly affecting the white populations. It has been reported a number of times and is now widely accepted, that early detection of melanoma increases the chances of the subject’s survival. Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques. In this work, we propose a framework that accurately segments, and later classifies, the lesion using improved image segmentation and fusion methods. The proposed technique takes an image More >

  • Open Access

    ARTICLE

    Facial Expression Recognition Based on the Fusion of Infrared and Visible Image

    Jiancheng Zou1, Jiaxin Li1,*, Juncun Wei1, Zhengzheng Li1, Xin Yang2

    Journal on Artificial Intelligence, Vol.3, No.3, pp. 123-134, 2021, DOI:10.32604/jai.2021.027069 - 25 January 2022

    Abstract Facial expression recognition is a research hot spot in the fields of computer vision and pattern recognition. However, the existing facial expression recognition models are mainly concentrated in the visible light environment. They have insufficient generalization ability and low recognition accuracy, and are vulnerable to environmental changes such as illumination and distance. In order to solve these problems, we combine the advantages of the infrared and visible images captured simultaneously by array equipment our developed with two infrared and two visible lens, so that the fused image not only has the texture information of visible… More >

  • Open Access

    ARTICLE

    Liver Lesions and Acute Intracerebral Hemorrhage Detection Using Multimodal Fusion

    Osama S. Faragallah1,*, Abdullah N. Muhammed2, Taha S. Taha3, Gamal G. N. Geweid4,5

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 215-225, 2021, DOI:10.32604/iasc.2021.019058 - 26 July 2021

    Abstract Medical image fusion is designed to help physicians in their decisions by providing them with a preclinical image with enough information. Accurate assessment and effective treatment of the disease reduce the time it takes to relieve the symptoms of the disease. This article utilizes an effective data fusion approach to work on two different imaging modalities; computed tomography (CT) and magnetic resonance imaging (MRI). The data fusion approach is based on the combination of singular value decomposition (SVD) and the Fast Discrete Curvelet Transform (FDCT) techniques to reduce processing time during the fusion process. The More >

  • Open Access

    ARTICLE

    Research on Face Anti-Spoofing Algorithm Based on Image Fusion

    Pingping Yu1, Jiayu Wang1, Ning Cao2,*, Heiner Dintera3

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3861-3876, 2021, DOI:10.32604/cmc.2021.017527 - 06 May 2021

    Abstract Along with the rapid development of biometric authentication technology, face recognition has been commercially used in many industries in recent years. However, it cannot be ignored that face recognition-based authentication techniques can be easily spoofed using various types of attacks such photographs, videos or forged 3D masks. In order to solve this problem, this work proposed a face anti-fraud algorithm based on the fusion of thermal infrared images and visible light images. The normal temperature distribution of the human face is stable and characteristic, and the important physiological information of the human body can be… More >

  • Open Access

    ARTICLE

    A Triple-Channel Encrypted Hybrid Fusion Technique to Improve Security of Medical Images

    Ahmed S. Salama1,2,3, Mohamed Amr Mokhtar3, Mazhar B. Tayel3, Esraa Eldesouky4,6, Ahmed Ali5,6,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 431-446, 2021, DOI:10.32604/cmc.2021.016165 - 22 March 2021

    Abstract Assuring medical images protection and robustness is a compulsory necessity nowadays. In this paper, a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform (DWT) with the energy compaction of the Discrete Wavelet Transform (DCT). The multi-level Encryption-based Hybrid Fusion Technique (EbhFT) aims to achieve great advances in terms of imperceptibility and security of medical images. A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform. Afterwards, a 64-bit hex key is employed to encrypt the host image as well as participate in the… More >

  • Open Access

    ARTICLE

    Infrared and Visible Image Fusion Based on NSST and RDN

    Peizhou Yan1, Jiancheng Zou2,*, Zhengzheng Li1, Xin Yang3

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 213-225, 2021, DOI:10.32604/iasc.2021.016201 - 17 March 2021

    Abstract Within the application of driving assistance systems, the detection of driver’s facial features in the cab for a spectrum of luminosities is mission critical. One method that addresses this concern is infrared and visible image fusion. Its purpose is to generate an aggregate image which can granularly and systematically illustrate scene details in a range of lighting conditions. Our study introduces a novel approach to this method with marked improvements. We utilize non-subsampled shearlet transform (NSST) to obtain the low and high frequency sub-bands of infrared and visible imagery. For the low frequency sub-band fusion,… More >

  • Open Access

    ARTICLE

    Intelligent Breast Cancer Prediction Empowered with Fusion and Deep Learning

    Shahan Yamin Siddiqui1,2, Iftikhar Naseer3, Muhammad Adnan Khan4, Muhammad Faheem Mushtaq5, Rizwan Ali Naqvi6,*, Dildar Hussain7, Amir Haider8

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1033-1049, 2021, DOI:10.32604/cmc.2021.013952 - 12 January 2021

    Abstract Breast cancer is the most frequently detected tumor that eventually could result in a significant increase in female mortality globally. According to clinical statistics, one woman out of eight is under the threat of breast cancer. Lifestyle and inheritance patterns may be a reason behind its spread among women. However, some preventive measures, such as tests and periodic clinical checks can mitigate its risk thereby, improving its survival chances substantially. Early diagnosis and initial stage treatment can help increase the survival rate. For that purpose, pathologists can gather support from nondestructive and efficient computer-aided diagnosis… More >

  • Open Access

    ARTICLE

    Intelligent Fusion of Infrared and Visible Image Data Based on Convolutional Sparse Representation and Improved Pulse-Coupled Neural Network

    Jingming Xia1, Yi Lu1, Ling Tan2,*, Ping Jiang3

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 613-624, 2021, DOI:10.32604/cmc.2021.013457 - 12 January 2021

    Abstract Multi-source information can be obtained through the fusion of infrared images and visible light images, which have the characteristics of complementary information. However, the existing acquisition methods of fusion images have disadvantages such as blurred edges, low contrast, and loss of details. Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform (NSST). Furthermore, the low-frequency subbands were fused by convolutional sparse representation (CSR), and the high-frequency subbands were fused by an improved pulse More >

  • Open Access

    ARTICLE

    Location Related Signals with Satellite Image Fusion Method Using Visual Image Integration Method

    G. Ravikanth1,∗, K. V. N. Sunitha2,†, B. Eswara Reddy3

    Computer Systems Science and Engineering, Vol.35, No.5, pp. 385-393, 2020

    Abstract Investigations were performed on a group utilizing (General Purpose Unit) GPU and executions were evaluated for the utilization of the created parallel usages to process satellite pictures from satellite Landsat7.The usage on a realistic group gives execution change from 2 to 18 times. The nature of the considered techniques was assessed by relative dimensionless global error in synthesis (ERGAS) and Quality Without Reference (QNR) measurements. The outcomes demonstrate execution picks ups and holding of value with the bunch of GPU contrasted with the outcomes and different analysts for a CPU and single GPU. The errand… More >

Displaying 21-30 on page 3 of 31. Per Page