Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Intelligent Intrusion Detection for Industrial Internet of Things Using Clustering Techniques

    Noura Alenezi, Ahamed Aljuhani*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2899-2915, 2023, DOI:10.32604/csse.2023.036657

    Abstract The rapid growth of the Internet of Things (IoT) in the industrial sector has given rise to a new term: the Industrial Internet of Things (IIoT). The IIoT is a collection of devices, apps, and services that connect physical and virtual worlds to create smart, cost-effective, and scalable systems. Although the IIoT has been implemented and incorporated into a wide range of industrial control systems, maintaining its security and privacy remains a significant concern. In the IIoT contexts, an intrusion detection system (IDS) can be an effective security solution for ensuring data confidentiality, integrity, and availability. In this paper, we… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Based Intruder Identification in Industrial Internet of Things Environment

    Khaled M. Alalayah1, Fatma S. Alrayes2, Jaber S. Alzahrani3, Khadija M. Alaidarous1, Ibrahim M. Alwayle1, Heba Mohsen4, Ibrahim Abdulrab Ahmed5, Mesfer Al Duhayyim6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3121-3139, 2023, DOI:10.32604/csse.2023.036352

    Abstract With the increased advancements of smart industries, cybersecurity has become a vital growth factor in the success of industrial transformation. The Industrial Internet of Things (IIoT) or Industry 4.0 has revolutionized the concepts of manufacturing and production altogether. In industry 4.0, powerful Intrusion Detection Systems (IDS) play a significant role in ensuring network security. Though various intrusion detection techniques have been developed so far, it is challenging to protect the intricate data of networks. This is because conventional Machine Learning (ML) approaches are inadequate and insufficient to address the demands of dynamic IIoT networks. Further, the existing Deep Learning (DL)… More >

  • Open Access

    ARTICLE

    Intrusion Detection Method Based on Active Incremental Learning in Industrial Internet of Things Environment

    Zeyong Sun1, Guo Ran2, Zilong Jin1,3,*

    Journal on Internet of Things, Vol.4, No.2, pp. 99-111, 2022, DOI:10.32604/jiot.2022.037416

    Abstract Intrusion detection is a hot field in the direction of network security. Classical intrusion detection systems are usually based on supervised machine learning models. These offline-trained models usually have better performance in the initial stages of system construction. However, due to the diversity and rapid development of intrusion techniques, the trained models are often difficult to detect new attacks. In addition, very little noisy data in the training process often has a considerable impact on the performance of the intrusion detection system. This paper proposes an intrusion detection system based on active incremental learning with the adaptive capability to solve… More >

  • Open Access

    ARTICLE

    Metaheuristics with Vector Quantization Enabled Codebook Compression Model for Secure Industrial Embedded Environment

    Adepu Shravan Kumar, S. Srinivasan*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3607-3620, 2023, DOI:10.32604/iasc.2023.036647

    Abstract At the present time, the Industrial Internet of Things (IIoT) has swiftly evolved and emerged, and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data. The use of image sensors as an automation tool for the IIoT is increasingly becoming more common. Due to the fact that this organisation transfers an enormous number of photographs at any one time, one of the most significant issues that it has is reducing the total quantity of data that is sent and, as a result, the available bandwidth, without compromising the image quality. Image… More >

  • Open Access

    ARTICLE

    An Efficient Intrusion Detection Framework for Industrial Internet of Things Security

    Samah Alshathri1, Ayman El-Sayed2, Walid El-Shafai3,4,*, Ezz El-Din Hemdan2

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 819-834, 2023, DOI:10.32604/csse.2023.034095

    Abstract Recently, the Internet of Things (IoT) has been used in various applications such as manufacturing, transportation, agriculture, and healthcare that can enhance efficiency and productivity via an intelligent management console remotely. With the increased use of Industrial IoT (IIoT) applications, the risk of brutal cyber-attacks also increased. This leads researchers worldwide to work on developing effective Intrusion Detection Systems (IDS) for IoT infrastructure against any malicious activities. Therefore, this paper provides effective IDS to detect and classify unpredicted and unpredictable severe attacks in contradiction to the IoT infrastructure. A comprehensive evaluation examined on a new available benchmark TON_IoT dataset is… More >

  • Open Access

    ARTICLE

    Optimization Scheme of Trusted Task Offloading in IIoT Scenario Based on DQN

    Xiaojuan Wang1, Zikui Lu1,*, Siyuan Sun2, Jingyue Wang1, Luona Song3, Merveille Nicolas4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2055-2071, 2023, DOI:10.32604/cmc.2023.031750

    Abstract With the development of the Industrial Internet of Things (IIoT), end devices (EDs) are equipped with more functions to capture information. Therefore, a large amount of data is generated at the edge of the network and needs to be processed. However, no matter whether these computing tasks are offloaded to traditional central clusters or mobile edge computing (MEC) devices, the data is short of security and may be changed during transmission. In view of this challenge, this paper proposes a trusted task offloading optimization scheme that can offer low latency and high bandwidth services for IIoT with data security. Blockchain… More >

  • Open Access

    ARTICLE

    A Novel Approach for Network Vulnerability Analysis in IIoT

    K. Sudhakar*, S. Senthilkumar

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 263-277, 2023, DOI:10.32604/csse.2023.029680

    Abstract Industrial Internet of Things (IIoT) offers efficient communication among business partners and customers. With an enlargement of IoT tools connected through the internet, the ability of web traffic gets increased. Due to the raise in the size of network traffic, discovery of attacks in IIoT and malicious traffic in the early stages is a very demanding issues. A novel technique called Maximum Posterior Dichotomous Quadratic Discriminant Jaccardized Rocchio Emphasis Boost Classification (MPDQDJREBC) is introduced for accurate attack detection with minimum time consumption in IIoT. The proposed MPDQDJREBC technique includes feature selection and categorization. First, the network traffic features are collected… More >

  • Open Access

    ARTICLE

    Anomaly Detection for Industrial Internet of Things Cyberattacks

    Rehab Alanazi*, Ahamed Aljuhani

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2361-2378, 2023, DOI:10.32604/csse.2023.026712

    Abstract The evolution of the Internet of Things (IoT) has empowered modern industries with the capability to implement large-scale IoT ecosystems, such as the Industrial Internet of Things (IIoT). The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational and financial harm to organizations. To preserve the confidentiality, integrity, and availability of IIoT networks, an anomaly-based intrusion detection system (IDS) can be used to provide secure, reliable, and efficient IIoT ecosystems. In this paper, we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Threat Detection in Industrial Internet of Things Environment

    Fahad F. Alruwaili*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5809-5824, 2022, DOI:10.32604/cmc.2022.031613

    Abstract Internet of Things (IoT) is one of the hottest research topics in recent years, thanks to its dynamic working mechanism that integrates physical and digital world into a single system. IoT technology, applied in industries, is termed as Industrial IoT (IIoT). IIoT has been found to be highly susceptible to attacks from adversaries, based on the difficulties observed in IIoT and its increased dependency upon internet and communication network. Intentional or accidental attacks on these approaches result in catastrophic effects like power outage, denial of vital health services, disruption to civil service, etc., Thus, there is a need exists to… More >

  • Open Access

    ARTICLE

    NOMA-Based Cooperative Relaying Transmission for the Industrial Internet of Things

    Yinghua Zhang1,*, Rui Cao1, Lixin Tian1, Rong Dai2, Zhennan Cao2, Jim Feng3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6513-6534, 2022, DOI:10.32604/cmc.2022.029467

    Abstract With the continuous maturity of the fifth generation (5G) communications, industrial Internet of Things (IIoT) technology has been widely applied in fields such as smart factories. In smart factories, 5G-based production line monitoring can improve production efficiency and reduce costs, but there are problems with limited monitoring coverage and insufficient wireless spectrum resources, which restricts the application of IIoT in the construction of smart factories. In response to these problems, we propose a hybrid spectrum access mechanism based on Non-Orthogonal Multiple Access (NOMA) cooperative relaying transmission to improve the monitoring coverage and spectrum efficiency. As there are a large number… More >

Displaying 1-10 on page 1 of 23. Per Page  

Share Link