Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Structure-Thermal Conductivity Tentative Correlation for Hybrid Aerogels Based on Nanofibrillated Cellulose-Mesoporous Silica Nanocomposite

    Dounia Bendahou1,2, Abdelkader Bendahou1, Bastien Seantier1, Bénédicte Lebeau3, Yves Grohens1,*, Hamid Kaddami2,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 299-313, 2018, DOI:10.7569/JRM.2017.634185

    Abstract Hybrid aerogels have been prepared by freeze-drying technique after mixing water dispersions of cellulose microfibers or cellulose nanofibers and silica (SiO2) of type SBA-15 (2D-hexagonal). The prepared composites were characterized by different analysis techniques such as SEM, hot-filament, DMA, etc. These composites are compared to those previously prepared using nanozeolites (NZs) as mineral charge. The morphology studied by SEM indicated that both systems have different structures, i.e., individual fibers for cellulose microfibers WP-based aerogels and films for nanofibrillated cellulose NFC-based ones.... These differences seem to be driven by the charge of the particles, their aspect More >

  • Open Access

    ARTICLE

    EFFECTIVE THERMAL RESISTANCE COMPARISON OF AEROGEL AND MULTI-LAYER INSULATION AS RADIATIVE BARRIERS USING THE SINGLE-SIDED GUARDED HOT PLATE METHOD

    Kevin W. Irick*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.2

    Abstract The Single-sided Guarded Hot Plate Method for Comparative Testing of Thermal Radiation Barriers in Vacuum was used to evaluate the performance of a variety of aerogel insulation specimens manufactured by Aspen Aerogels® against one another and against multi-layer insulation (MLI). Testing at the Air Force Research Laboratory (AFRL) shows that the effective thermal resistance, Re, of all tested aerogel specimens are virtually bounded by the performance of 5-layer and 10-layer MLI specimens over a mean specimen temperature, Tm, range of about 270K to 315K. More >

  • Open Access

    Cardboard-Based Packaging Materials as Renewable Thermal Insulation of Buildings: Thermal and Life-Cycle Performance

    M. Čekon*, K. Struhala, R. Slávik

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 84-93, 2017, DOI:10.7569/JRM.2017.634135

    Abstract Cardboard-based packaging components represent a material that has significant potential as a renewable source for exploitation in buildings. This study presents the results of thermal and environmental analyses of existing packaging materials compared with standard conventional thermal insulations.
    Experimental measurements were performed to identify the thermal performance of studied cardboard packaging materials. Real-size samples were experimentally tested in laboratory measurements. The thermal resistance and conductivity of all the analyzed samples were measured according to the procedure indicated in the ISO8032 standard. A life-cycle assessment according to ISO 14040 was also performed to evaluate the environmental More >

  • Open Access

    ARTICLE

    Karanja Oil Polyol and Rigid Polyurethane Biofoams for Thermal Insulation

    M. Himabindu1, K. Kamalakar2, MSL Karuna2, Aruna Palanisamy1*

    Journal of Renewable Materials, Vol.5, No.2, pp. 124-131, 2017, DOI:10.7569/JRM.2016.634137

    Abstract Rigid polyurethane biofoams were prepared from karanja polyol which was derived by ring-opening reaction of epoxidized karanja oil. The polyol, which had a hydroxyl value of 186 mg KOH/g, was thoroughly characterized and the structure confirmed by spectral techniques. The foam formulations were developed to achieve shrinkage-free foams with water used as the blowing agent. The resulting foams were characterized for their mechanical properties like density, compression strength and flexural strength. The densities and mechanical properties, such as compression and flexural strength, varied with the amount of methylene diphenyl diisocyanate (MDI) for a fixed amount More >

  • Open Access

    ARTICLE

    Formaldehyde-Free Prorobitenidin/Profi setinidin Tannin/ Furanic Foams Based on Alternative Aldehydes: Glyoxal and Glutaraldehyde

    X. Li1, A. Pizzi1,2,*, X. Zhou3,*, V. Fierro4, A. Celzard4

    Journal of Renewable Materials, Vol.3, No.2, pp. 142-150, 2015, DOI:10.7569/JRM.2014.634117

    Abstract Tannin/furanic foams, typically 95% composed of materials of natural origin such as prorobinetinidin/ profi setinidin tannins and furfuryl alcohol, are potential alternatives to oil-based synthetic foams such as phenol-formaldehyde, and polyurethane foams. This article describes the development of second generation tannin/furanic foams, which are not only formaldehyde free, but also use nonvolatile, nontoxic aldehydes. Both glyoxal and glutaraldehyde were tried to substitute formaldehyde in tannin/furanic foams. The physical properties of these new foams are described and discussed. It was found that glutaraldehyde can totally substitute formaldehyde during tannin/furanic foam preparation, but that glyoxal cannot. The More >

Displaying 31-40 on page 4 of 35. Per Page