Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (233)
  • Open Access

    ARTICLE

    Detecting Man-in-the-Middle Attack in Fog Computing for Social Media

    Farouq Aliyu1,*, Tarek Sheltami1, Ashraf Mahmoud1, Louai Al-Awami1, Ansar Yasar2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1159-1181, 2021, DOI:10.32604/cmc.2021.016938 - 04 June 2021

    Abstract Fog computing (FC) is a networking paradigm where wireless devices known as fog nodes are placed at the edge of the network (close to the Internet of Things (IoT) devices). Fog nodes provide services in lieu of the cloud. Thus, improving the performance of the network and making it attractive to social media-based systems. Security issues are one of the most challenges encountered in FC. In this paper, we propose an anomaly-based Intrusion Detection and Prevention System (IDPS) against Man-in-the-Middle (MITM) attack in the fog layer. The system uses special nodes known as Intrusion Detection… More >

  • Open Access

    ARTICLE

    A Secure Intrusion Detection System in Cyberphysical Systems Using a Parameter-Tuned Deep-Stacked Autoencoder

    Nojood O. Aljehane*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3915-3929, 2021, DOI:10.32604/cmc.2021.017905 - 06 May 2021

    Abstract Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in the daily lives of humans because they form the basis of future smart devices. Increased utilization of CPSs, however, poses many threats, which may be of major significance for users. Such security issues in CPSs represent a global issue; therefore, developing a robust, secure, and effective CPS is currently a hot research topic. To… More >

  • Open Access

    ARTICLE

    Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System

    Thavavel Vaiyapuri*, Adel Binbusayyis

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3271-3288, 2021, DOI:10.32604/cmc.2021.017665 - 06 May 2021

    Abstract In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an… More >

  • Open Access

    ARTICLE

    Unknown Attack Detection: Combining Relabeling and Hybrid Intrusion Detection

    Gun-Yoon Shin1, Dong-Wook Kim1, Sang-Soo Kim2, Myung-Mook Han3,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3289-3303, 2021, DOI:10.32604/cmc.2021.017502 - 06 May 2021

    Abstract Detection of unknown attacks like a zero-day attack is a research field that has long been studied. Recently, advances in Machine Learning (ML) and Artificial Intelligence (AI) have led to the emergence of many kinds of attack-generation tools developed using these technologies to evade detection skillfully. Anomaly detection and misuse detection are the most commonly used techniques for detecting intrusion by unknown attacks. Although anomaly detection is adequate for detecting unknown attacks, its disadvantage is the possibility of high false alarms. Misuse detection has low false alarms; its limitation is that it can detect only… More >

  • Open Access

    ARTICLE

    Black Hole and Sink Hole Attack Detection in Wireless Body Area Networks

    Rajesh Kumar Dhanaraj1, Lalitha Krishnasamy2, Oana Geman3,*, Diana Roxana Izdrui4

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1949-1965, 2021, DOI:10.32604/cmc.2021.015363 - 13 April 2021

    Abstract In Wireless Body Area Networks (WBANs) with respect to health care, sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically. The great challenges posed to healthcare WBANs are the black hole and sink hole attacks. Data from deployed sensor nodes are attracted by sink hole or black hole nodes while grabbing the shortest path. Identifying this issue is quite a challenging task as a small variation in medicine intake may result in a severe illness. This work proposes a hybrid detection framework for attacks by applying… More >

  • Open Access

    ARTICLE

    A Hybrid Model Using Bio-Inspired Metaheuristic Algorithms for Network Intrusion Detection System

    Omar Almomani*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 409-429, 2021, DOI:10.32604/cmc.2021.016113 - 22 March 2021

    Abstract Network Intrusion Detection System (IDS) aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls. The features selection approach plays an important role in constructing effective network IDS. Various bio-inspired metaheuristic algorithms used to reduce features to classify network traffic as abnormal or normal traffic within a shorter duration and showing more accuracy. Therefore, this paper aims to propose a hybrid model for network IDS based on hybridization bio-inspired metaheuristic algorithms to detect the generic attack. The proposed model has… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Hybrid Intelligent Intrusion Detection System

    Muhammad Ashfaq Khan1,2, Yangwoo Kim1,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 671-687, 2021, DOI:10.32604/cmc.2021.015647 - 22 March 2021

    Abstract Machine learning (ML) algorithms are often used to design effective intrusion detection (ID) systems for appropriate mitigation and effective detection of malicious cyber threats at the host and network levels. However, cybersecurity attacks are still increasing. An ID system can play a vital role in detecting such threats. Existing ID systems are unable to detect malicious threats, primarily because they adopt approaches that are based on traditional ML techniques, which are less concerned with the accurate classification and feature selection. Thus, developing an accurate and intelligent ID system is a priority. The main objective of… More >

  • Open Access

    ARTICLE

    Anomaly Detection in ICS Datasets with Machine Learning Algorithms

    Sinil Mubarak1, Mohamed Hadi Habaebi1,*, Md Rafiqul Islam1, Farah Diyana Abdul Rahman, Mohammad Tahir2

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 33-46, 2021, DOI:10.32604/csse.2021.014384 - 05 February 2021

    Abstract An Intrusion Detection System (IDS) provides a front-line defense mechanism for the Industrial Control System (ICS) dedicated to keeping the process operations running continuously for 24 hours in a day and 7 days in a week. A well-known ICS is the Supervisory Control and Data Acquisition (SCADA) system. It supervises the physical process from sensor data and performs remote monitoring control and diagnostic functions in critical infrastructures. The ICS cyber threats are growing at an alarming rate on industrial automation applications. Detection techniques with machine learning algorithms on public datasets, suitable for intrusion detection of More >

  • Open Access

    ARTICLE

    M-IDM: A Multi-Classification Based Intrusion Detection Model in Healthcare IoT

    Jae Dong Lee1,2, Hyo Soung Cha1, Shailendra Rathore2, Jong Hyuk Park2,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1537-1553, 2021, DOI:10.32604/cmc.2021.014774 - 05 February 2021

    Abstract In recent years, the application of a smart city in the healthcare sector via loT systems has continued to grow exponentially and various advanced network intrusions have emerged since these loT devices are being connected. Previous studies focused on security threat detection and blocking technologies that rely on testbed data obtained from a single medical IoT device or simulation using a well-known dataset, such as the NSL-KDD dataset. However, such approaches do not reflect the features that exist in real medical scenarios, leading to failure in potential threat detection. To address this problem, we proposed… More >

  • Open Access

    ARTICLE

    A Cyber Kill Chain Approach for Detecting Advanced Persistent Threats

    Yussuf Ahmed1,*, A.Taufiq Asyhari1, Md Arafatur Rahman2

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2497-2513, 2021, DOI:10.32604/cmc.2021.014223 - 05 February 2021

    Abstract The number of cybersecurity incidents is on the rise despite significant investment in security measures. The existing conventional security approaches have demonstrated limited success against some of the more complex cyber-attacks. This is primarily due to the sophistication of the attacks and the availability of powerful tools. Interconnected devices such as the Internet of Things (IoT) are also increasing attack exposures due to the increase in vulnerabilities. Over the last few years, we have seen a trend moving towards embracing edge technologies to harness the power of IoT devices and 5G networks. Edge technology brings… More >

Displaying 201-210 on page 21 of 233. Per Page