Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (233)
  • Open Access

    ARTICLE

    A Novel Intrusion Detection Algorithm Based on Long Short Term Memory Network

    Xinda Hao1, Jianmin Zhou2,*, Xueqi Shen1, Yu Yang1

    Journal of Quantum Computing, Vol.2, No.2, pp. 97-104, 2020, DOI:10.32604/jqc.2020.010819 - 19 October 2020

    Abstract In recent years, machine learning technology has been widely used for timely network attack detection and classification. However, due to the large number of network traffic and the complex and variable nature of malicious attacks, many challenges have arisen in the field of network intrusion detection. Aiming at the problem that massive and high-dimensional data in cloud computing networks will have a negative impact on anomaly detection, this paper proposes a Bi-LSTM method based on attention mechanism, which learns by transmitting IDS data to multiple hidden layers. Abstract information and high-dimensional feature representation in network More >

  • Open Access

    ARTICLE

    Towards Improving the Intrusion Detection through ELM (Extreme Learning Machine)

    Iftikhar Ahmad1, *, Rayan Atteah Alsemmeari1

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1097-1111, 2020, DOI:10.32604/cmc.2020.011732 - 20 August 2020

    Abstract An IDS (intrusion detection system) provides a foremost front line mechanism to guard networks, systems, data, and information. That’s why intrusion detection has grown as an active study area and provides significant contribution to cyber-security techniques. Multiple techniques have been in use but major concern in their implementation is variation in their detection performance. The performance of IDS lies in the accurate detection of attacks, and this accuracy can be raised by improving the recognition rate and significant reduction in the false alarms rate. To overcome this problem many researchers have used different machine learning… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks

    Fei Li1, *, Jiayan Zhang1, Edward Szczerbicki2, Jiaqi Song1, Ruxiang Li 1, Renhong Diao1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 653-681, 2020, DOI:10.32604/cmc.2020.011264 - 23 July 2020

    Abstract The increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated the intrusion detection system based on the in-vehicle system. We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior. In order to More >

  • Open Access

    ARTICLE

    Applying Stack Bidirectional LSTM Model to Intrusion Detection

    Ziyong Ran1, Desheng Zheng1, *, Yanling Lai1, Lulu Tian2

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 309-320, 2020, DOI:10.32604/cmc.2020.010102 - 23 July 2020

    Abstract Nowadays, Internet has become an indispensable part of daily life and is used in many fields. Due to the large amount of Internet traffic, computers are subject to various security threats, which may cause serious economic losses and even endanger national security. It is hoped that an effective security method can systematically classify intrusion data in order to avoid leakage of important data or misuse of data. As machine learning technology matures, deep learning is widely used in various industries. Combining deep learning with network security and intrusion detection is the current trend. In this… More >

  • Open Access

    ARTICLE

    Using Object Detection Network for Malware Detection and Identification in Network Traffic Packets

    Chunlai Du1, Shenghui Liu1, Lei Si2, Yanhui Guo2, *, Tong Jin1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1785-1796, 2020, DOI:10.32604/cmc.2020.010091 - 30 June 2020

    Abstract In recent years, the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware. Malware detection has attracted more attention and still faces severe challenges. As malware detection based traditional machine learning relies on exports’ experience to design efficient features to distinguish different malware, it causes bottleneck on feature engineer and is also time-consuming to find efficient features. Due to its promising ability in automatically proposing and selecting significant features, deep learning has gradually become a research hotspot. In More >

  • Open Access

    ARTICLE

    High Speed Network Intrusion Detection System (NIDS) Using Low Power Precomputation Based Content Addressable Memory

    R. Mythili1, *, P. Kalpana2

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1097-1107, 2020, DOI:10.32604/cmc.2020.08396

    Abstract NIDS (Network Intrusion Detection Systems) plays a vital role in security threats to computers and networks. With the onset of gigabit networks, hardware-based Intrusion Detection System gains popularity because of its high performance when compared to the software-based NIDS. The software-based system limits parallel execution, which in turn confines the performance of a modern network. This paper presents a signature-based lookup technique using reconfigurable hardware. Content Addressable Memory (CAM) is used as a lookup table architecture to improve the speed instead of search algorithms. To minimize the power and to increase the speed, precomputation based… More >

  • Open Access

    ARTICLE

    Intrusion Detection and Anticipation System (IDAS) for IEEE 802.15.4 Devices

    Usman Tariq

    Intelligent Automation & Soft Computing, Vol.25, No.2, pp. 231-242, 2019, DOI:10.31209/2018.100000040

    Abstract Wireless Sensor Networks (WSNs) empower the reflection of the environment with an extraordinary resolve. These systems are combination of several minuscule squat-cost, and stumpy-power on-chip transceiver sensing motes. Characteristically, a sensing device comprises of four key gears: an identifying element for data attainment, a microcontroller for native data dispensation, a message component to permit the broadcast/response of data to/from additional associated hardware, and lastly, a trivial energy source. Near field frequency series and inadequate bandwidth of transceiver device drags to multi-stage data transactions at minimum achievable requirements. State of art, and prevailing operating systems, such… More >

  • Open Access

    ARTICLE

    A Hierarchy Distributed-Agents Model for Network Risk Evaluation Based on Deep Learning

    Jin Yang1, Tao Li1, Gang Liang1,*, Wenbo He2, Yue Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 1-23, 2019, DOI:10.32604/cmes.2019.04727

    Abstract Deep Learning presents a critical capability to be geared into environments being constantly changed and ongoing learning dynamic, which is especially relevant in Network Intrusion Detection. In this paper, as enlightened by the theory of Deep Learning Neural Networks, Hierarchy Distributed-Agents Model for Network Risk Evaluation, a newly developed model, is proposed. The architecture taken on by the distributed-agents model are given, as well as the approach of analyzing network intrusion detection using Deep Learning, the mechanism of sharing hyper-parameters to improve the efficiency of learning is presented, and the hierarchical evaluative framework for Network More >

  • Open Access

    ARTICLE

    Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection

    Ling Tan1,*, Chong Li2, Jingming Xia2, Jun Cao3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 275-288, 2019, DOI:10.32604/cmc.2019.03735

    Abstract Due to the widespread use of the Internet, customer information is vulnerable to computer systems attack, which brings urgent need for the intrusion detection technology. Recently, network intrusion detection has been one of the most important technologies in network security detection. The accuracy of network intrusion detection has reached higher accuracy so far. However, these methods have very low efficiency in network intrusion detection, even the most popular SOM neural network method. In this paper, an efficient and fast network intrusion detection method was proposed. Firstly, the fundamental of the two different methods are introduced More >

  • Open Access

    ARTICLE

    An Intrusion Detection Algorithm Based on Feature Graph

    Xiang Yu1, Zhihong Tian2, Jing Qiu2,*, Shen Su2,*, Xiaoran Yan3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 255-274, 2019, DOI:10.32604/cmc.2019.05821

    Abstract With the development of Information technology and the popularization of Internet, whenever and wherever possible, people can connect to the Internet optionally. Meanwhile, the security of network traffic is threatened by various of online malicious behaviors. The aim of an intrusion detection system (IDS) is to detect the network behaviors which are diverse and malicious. Since a conventional firewall cannot detect most of the malicious behaviors, such as malicious network traffic or computer abuse, some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches.… More >

Displaying 221-230 on page 23 of 233. Per Page