Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm

    Jipeng Gu1, Weijie Zhang1, Youbing Zhang1,*, Binjie Wang1, Wei Lou2, Mingkang Ye3, Linhai Wang3, Tao Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2221-2236, 2023, DOI:10.32604/cmes.2023.025396

    Abstract An improved fuzzy time series algorithm based on clustering is designed in this paper. The algorithm is successfully applied to short-term load forecasting in the distribution stations. Firstly, the K-means clustering method is used to cluster the data, and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division. On this basis, the data is fuzzed to form a fuzzy time series. Secondly, a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load, which is used to predict the short-term trend change of load in the… More >

  • Open Access

    ARTICLE

    Cardiac CT Image Segmentation for Deep Learning–Based Coronary Calcium Detection Using K-Means Clustering and Grabcut Algorithm

    Sungjin Lee1, Ahyoung Lee2, Min Hong3,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2543-2554, 2023, DOI:10.32604/csse.2023.037055

    Abstract Specific medical data has limitations in that there are not many numbers and it is not standardized. to solve these limitations, it is necessary to study how to efficiently process these limited amounts of data. In this paper, deep learning methods for automatically determining cardiovascular diseases are described, and an effective preprocessing method for CT images that can be applied to improve the performance of deep learning was conducted. The cardiac CT images include several parts of the body such as the heart, lungs, spine, and ribs. The preprocessing step proposed in this paper divided CT image data into regions… More >

  • Open Access

    ARTICLE

    Micro Calcification Detection in Mammogram Images Using Contiguous Convolutional Neural Network Algorithm

    P. Gomathi1,*, C. Muniraj2, P. S. Periasamy3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1887-1899, 2023, DOI:10.32604/csse.2023.028808

    Abstract The mortality rate decreases as the early detection of Breast Cancer (BC) methods are emerging very fast, and when the starting stage of BC is detected, it is curable. The early detection of the disease depends on the image processing techniques, and it is used to identify the disease easily and accurately, especially the micro calcifications are visible on mammography when they are 0.1 mm or bigger, and cancer cells are about 0.03 mm, which is crucial for identifying in the BC area. To achieve this micro calcification in the BC images, it is necessary to focus on the four… More >

  • Open Access

    ARTICLE

    Robust Vehicle Detection Based on Improved You Look Only Once

    Sunil Kumar1, Manisha Jailia1, Sudeep Varshney2, Nitish Pathak3, Shabana Urooj4,*, Nouf Abd Elmunim4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3561-3577, 2023, DOI:10.32604/cmc.2023.029999

    Abstract Vehicle detection is still challenging for intelligent transportation systems (ITS) to achieve satisfactory performance. The existing methods based on one stage and two-stage have intrinsic weakness in obtaining high vehicle detection performance. Due to advancements in detection technology, deep learning-based methods for vehicle detection have become more popular because of their higher detection accuracy and speed than the existing algorithms. This paper presents a robust vehicle detection technique based on Improved You Look Only Once (RVD-YOLOv5) to enhance vehicle detection accuracy. The proposed method works in three phases; in the first phase, the K-means algorithm performs data clustering on datasets… More >

  • Open Access

    ARTICLE

    Analyzing the Urban Hierarchical Structure Based on Multiple Indicators of Economy and Industry: An Econometric Study in China

    Jing Cheng1, Yang Xie2, Jie Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1831-1855, 2022, DOI:10.32604/cmes.2022.020178

    Abstract For a city, analyzing its advantages, disadvantages and the level of economic development in a country is important, especially for the cities in China developing at flying speed. The corresponding literatures for the cities in China have not considered the indicators of economy and industry in detail. In this paper, based on multiple indicators of economy and industry, the urban hierarchical structure of 285 cities above the prefecture level in China is investigated. The indicators from the economy, industry, infrastructure, medical care, population, education, culture, and employment levels are selected to establish a new indicator system for analyzing urban hierarchical… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation with Intuitionist Possibilistic Fuzzy Clustering and Morphological Operations

    J. Anitha*, M. Kalaiarasu

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 363-379, 2022, DOI:10.32604/csse.2022.022402

    Abstract Digital Image Processing (DIP) is a well-developed field in the biological sciences which involves classification and detection of tumour. In medical science, automatic brain tumor diagnosis is an important phase. Brain tumor detection is performed by Computer-Aided Diagnosis (CAD) systems. The human image creation is greatly achieved by an approach namely medical imaging which is exploited for medical and research purposes. Recently Automatic brain tumor detection from MRI images has become the emerging research area of medical research. Brain tumor diagnosis mainly performed for obtaining exact location, orientation and area of abnormal tissues. Cancer and edema regions inference from brain… More >

  • Open Access

    ARTICLE

    Automated Learning of ECG Streaming Data Through Machine Learning Internet of Things

    Mwaffaq Abu-Alhaija, Nidal M. Turab*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 45-53, 2022, DOI:10.32604/iasc.2022.021426

    Abstract Applying machine learning techniques on Internet of Things (IoT) data streams will help achieve better understanding, predict future perceptions, and make crucial decisions based on those analytics. The collaboration between IoT, Big Data and machine learning can be found in different domains such as Health care, Smart cities, and Telecommunications. The aim of this paper is to develop a method for automated learning of electrocardiogram (ECG) streaming data to detect any heart beat anomalies. A promising solution is to use medical sensors that transfer vital signs to medical care computer systems, combined with machine learning, such that clinicians can get… More >

  • Open Access

    ARTICLE

    Recommendation Learning System Model for Children with Autism

    V. Balaji*, S. Kanaga Suba Raja

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1301-1315, 2022, DOI:10.32604/iasc.2022.020287

    Abstract Autism spectrum disorder (ASD), is a neurological developmental disorder. It affects how people communicate and interact with others, as well as how they behave and learn. The symptoms and signs appear when a child is very young. Derived with increased usage of machine learning procedure in the medicinal analysis investigations. In this paper, our objective is to find out the most significant attributes and automate the process using classification techniques and pattern clustering using K-means clustering. We have analyzed ASD datasets of children towards determining the best performance of classifier for these binary datasets considering recall, precision, accuracy and classification… More >

  • Open Access

    ARTICLE

    YOLOv2PD: An Efficient Pedestrian Detection Algorithm Using Improved YOLOv2 Model

    Chintakindi Balaram Murthy1, Mohammad Farukh Hashmi1, Ghulam Muhammad2,3,*, Salman A. AlQahtani2,3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3015-3031, 2021, DOI:10.32604/cmc.2021.018781

    Abstract Real-time pedestrian detection is an important task for unmanned driving systems and video surveillance. The existing pedestrian detection methods often work at low speed and also fail to detect smaller and densely distributed pedestrians by losing some of their detection accuracy in such cases. Therefore, the proposed algorithm YOLOv2 (“YOU ONLY LOOK ONCE Version 2”)-based pedestrian detection (referred to as YOLOv2PD) would be more suitable for detecting smaller and densely distributed pedestrians in real-time complex road scenes. The proposed YOLOv2PD algorithm adopts a Multi-layer Feature Fusion (MLFF) strategy, which helps to improve the model’s feature extraction ability. In addition, one… More >

  • Open Access

    ARTICLE

    Performances of K-Means Clustering Algorithm with Different Distance Metrics

    Taher M. Ghazal1,2, Muhammad Zahid Hussain3, Raed A. Said5, Afrozah Nadeem6, Mohammad Kamrul Hasan1, Munir Ahmad7, Muhammad Adnan Khan3,4,*, Muhammad Tahir Naseem3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 735-742, 2021, DOI:10.32604/iasc.2021.019067

    Abstract Clustering is the process of grouping the data based on their similar properties. Meanwhile, it is the categorization of a set of data into similar groups (clusters), and the elements in each cluster share similarities, where the similarity between elements in the same cluster must be smaller enough to the similarity between elements of different clusters. Hence, this similarity can be considered as a distance measure. One of the most popular clustering algorithms is K-means, where distance is measured between every point of the dataset and centroids of clusters to find similar data objects and assign them to the nearest… More >

Displaying 1-10 on page 1 of 22. Per Page  

Share Link