Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (492)
  • Open Access

    ARTICLE

    An Adaptive Multi-resolution Method for Solving PDE's

    V. Kozulić1, H. Gotovac1, B. Gotovac1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 51-70, 2007, DOI:10.3970/cmc.2007.006.051

    Abstract In this paper, we present a multi-resolution adaptive algorithm for solving problems described by partial differential equations. The technique is based on the collocation method using Fup basis functions, which belong to a class of Rvachev's infinitely differentiable finite functions. As it is possible to calculate derivation values of Fup basis functions of high degree in a precise yet simple way, so it is possible to efficiently apply strong formulation procedures. The mesh free method developed in this work is named Adaptive Fup Collocation Method (AFCM). The distribution of collocation points within the observed area… More >

  • Open Access

    ARTICLE

    Investigations on the Accuracy and Condition Number for the Method of Fundamental Solutions

    C.C. Tsai1, Y.C. Lin2, D.L. Young2,3, S.N. Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.2, pp. 103-114, 2006, DOI:10.3970/cmes.2006.016.103

    Abstract In the applications of the method of fundamental solutions, locations of sources are treated either as variables or a priori known constants. In which, the former results in a nonlinear optimization problem and the other has to face the problem of locating sources. Theoretically, farther sources results in worse conditioning and better accuracy. In this paper, a practical procedure is provided to locate the sources for various time-independent operators, including Laplacian, Helmholtz operator, modified Helmholtz operator, and biharmonic operator. Wherein, the procedure is developed through systematic numerical experiments for relations among the accuracy, condition number, and More >

  • Open Access

    ARTICLE

    Multiscale Simulation of Nanoindentation Using the Generalized Interpolation Material Point (GIMP) Method, Dislocation Dynamics (DD) and Molecular Dynamics (MD)

    Jin Ma, Yang Liu, Hongbing Lu, Ranga Komanduri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.1, pp. 41-56, 2006, DOI:10.3970/cmes.2006.016.041

    Abstract A multiscale simulation technique coupling three scales, namely, the molecular dynamics (MD) at the atomistic scale, the discrete dislocations at the meso scale and the generalized interpolation material point (GIMP) method at the continuum scale is presented. Discrete dislocations are first coupled with GIMP using the principle of superposition (van der Giessen and Needleman (1995)). A detection band seeded in the MD region is used to pass the dislocations to and from the MD simulations (Shilkrot, Miller and Curtin (2004)). A common domain decomposition scheme for each of the three scales was implemented for parallel More >

  • Open Access

    ARTICLE

    Efficient Green's Function Modeling of Line and Surface Defects in Multilayered Anisotropic Elastic and Piezoelectric Materials1

    B. Yang2, V. K. Tewary3

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 165-178, 2006, DOI:10.3970/cmes.2006.015.165

    Abstract Green's function (GF) modeling of defects may take effect only if the GF as well as its various integrals over a line, a surface and/or a volume can be efficiently evaluated. The GF is needed in modeling a point defect, while integrals are needed in modeling line, surface and volumetric defects. In a matrix of multilayered, generally anisotropic and linearly elastic and piezoelectric materials, the GF has been derived by applying 2D Fourier transforms and the Stroh formalism. Its use involves another two dimensions of integration in the Fourier inverse transform. A semi-analytical scheme has… More >

  • Open Access

    ARTICLE

    Performance of Multiquadric Collocation Method in Solving Lid-driven Cavity Flow Problem with Low Reynolds Number

    S. Chantasiriwan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 137-146, 2006, DOI:10.3970/cmes.2006.015.137

    Abstract The multiquadric collocation method is the collocation method based on radial basis function known as multiquadrics. It has been successfully used to solve several linear and nonlinear problems. Although fluid flow problems are among problems previously solved by this method, there is still an outstanding issue regarding the influence of the free parameter of multiquadrics (or the shape parameter) on the performance of the method. This paper provides additional results of using the multiquadric collocation method to solve the lid-driven cavity flow problem. The method is used to solve the problem in the stream function-vorticity More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems

    S. N. Atluri1, H. T. Liu2, Z. D. Han2

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.3, pp. 141-152, 2006, DOI:10.3970/cmes.2006.014.141

    Abstract The Meshless Local Petrov-Galerkin (MLPG) mixed collocation method is proposed in this paper, for solving elasticity problems. In the present MLPG approach, the mixed scheme is applied to interpolate the displacements and stresses independently, as in the MLPG finite volume method. To improve the efficiency, the local weak form is established at the nodal points, for the stresses, by using the collocation method. The traction boundary conditions are also imposed into the stress equations directly. It becomes very simple and straightforward to impose various boundary conditions, especially for the high-order PDEs. Numerical examples show that More >

  • Open Access

    ARTICLE

    Multiscale Crystal Plasticity Modeling based on Field Theory

    T. Hasebe1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 145-156, 2006, DOI:10.3970/cmes.2006.011.145

    Abstract This paper presents recent achievements in field theoretical approach toward substantial linkage among key hieratical scales dominating polycrystalline plasticity of metals and alloys. Major ingredients of the theory are briefly shown first, which is followed by several overwhelming results and some implications including key factors for dislocation cell structure evolution, key features of polycrystalline plasticity and their rational modeling in crystal plasticity-based constitutive equation. More >

  • Open Access

    ARTICLE

    Discrete Dislocation Dynamics Simulation of Interfacial Dislocation Network in Gamma/Gamma-Prime Microstructure of Ni-based Superalloys

    K. Yashiro1, Y. Nakashima1, Y. Tomita1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.2, pp. 73-80, 2006, DOI:10.3970/cmes.2006.011.073

    Abstract A simple back force model is proposed for a dislocation cutting into γ' precipitate, taking the work formaking and recovering an anti-phase boundary (APB) into account. The first dislocation, or a leading partial of a superdislocation, is acted upon by a back force whose magnitude is equal to the APB energy. The second dislocation, or a trailing partial of a superdislocation, is attracted by the APB with a force of the same magnitude. The model is encoded in the 3D discrete dislocation dynamics (DDD) code and applied to the cutting behavior of dislocations at a… More >

  • Open Access

    ARTICLE

    Effect of Bubble Size and Location on Segregation Pattern and Interface Shape in Microgravity Crystal Growth

    M. Kassemi1, Y. Wang2, S. Barsi1,3, B.T.F. Chung2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 27-46, 2006, DOI:10.3970/fdmp.2006.002.027

    Abstract Microgravity experiments, especially materials processing experiments, have often been hampered by presence of unwanted bubbles. In this work, the effect of thermocapillary convection generated by a bubble on the Bridgman growth of a dilute binary alloy in microgravity is investigated numerically. The model is based on the quasi-steady Navier-Stokes equations for the fluid flow in the melt coupled with the conservation equations for transport of energy and species in the growth ampoule. Numerical results indicate three different growth regimes based on the distance between the bubble and the growth interface: a diffusion dominated regime that More >

  • Open Access

    ARTICLE

    A Comparative Study of Meshless Approximations in Local Integral Equation Method

    Vladimir Sladek1, Jan Sladek1, Chuanzeng Zhang2

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 177-188, 2006, DOI:10.3970/cmc.2006.004.177

    Abstract This paper concerns the stability, convergence of accuracy and cost efficiency of four various formulations for solution of boundary value problems in non-homogeneous elastic solids with functionally graded Young's modulus. The meshless point interpolation method is employed with using various basis functions. The interaction among the elastic continuum constituents is considered in the discretized formulation either by collocation of the governing equations or by integral satisfaction of the force equilibrium on local sub-domains. The exact benchmark solutions are used in numerical tests. More >

Displaying 471-480 on page 48 of 492. Per Page