Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Enhanced Deep Learning for Detecting Suspicious Fall Event in Video Data

    Madhuri Agrawal*, Shikha Agrawal

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2653-2667, 2023, DOI:10.32604/iasc.2023.033493

    Abstract

    Suspicious fall events are particularly significant hazards for the safety of patients and elders. Recently, suspicious fall event detection has become a robust research case in real-time monitoring. This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving backgrounds in an indoor environment; it is further proposed to use a deep learning method known as Long Short Term Memory (LSTM) by introducing visual attention-guided mechanism along with a bi-directional LSTM model. This method contributes essential information on the temporal and spatial locations of ‘suspicious fall’ events in learning the video frame in both… More >

  • Open Access

    ARTICLE

    Short Term Traffic Flow Prediction Using Hybrid Deep Learning

    Mohandu Anjaneyulu, Mohan Kubendiran*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1641-1656, 2023, DOI:10.32604/cmc.2023.035056

    Abstract Traffic flow prediction in urban areas is essential in the Intelligent Transportation System (ITS). Short Term Traffic Flow (STTF) prediction impacts traffic flow series, where an estimation of the number of vehicles will appear during the next instance of time per hour. Precise STTF is critical in Intelligent Transportation System. Various extinct systems aim for short-term traffic forecasts, ensuring a good precision outcome which was a significant task over the past few years. The main objective of this paper is to propose a new model to predict STTF for every hour of a day. In this paper, we have proposed… More >

  • Open Access

    ARTICLE

    Predicting and Curing Depression Using Long Short Term Memory and Global Vector

    Ayan Kumar1, Abdul Quadir Md1, J. Christy Jackson1,*, Celestine Iwendi2

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5837-5852, 2023, DOI:10.32604/cmc.2023.033431

    Abstract In today’s world, there are many people suffering from mental health problems such as depression and anxiety. If these conditions are not identified and treated early, they can get worse quickly and have far-reaching negative effects. Unfortunately, many people suffering from these conditions, especially depression and hypertension, are unaware of their existence until the conditions become chronic. Thus, this paper proposes a novel approach using Bi-directional Long Short-Term Memory (Bi-LSTM) algorithm and Global Vector (GloVe) algorithm for the prediction and treatment of these conditions. Smartwatches and fitness bands can be equipped with these algorithms which can share data with a… More >

  • Open Access

    ARTICLE

    Optimized Deep Learning Model for Effective Spectrum Sensing in Dynamic SNR Scenario

    G. Arunachalam1,*, P. SureshKumar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1279-1294, 2023, DOI:10.32604/csse.2023.031001

    Abstract The main components of Cognitive Radio networks are Primary Users (PU) and Secondary Users (SU). The most essential method used in Cognitive networks is Spectrum Sensing, which detects the spectrum band and opportunistically accesses the free white areas for different users. Exploiting the free spaces helps to increase the spectrum efficiency. But the existing spectrum sensing techniques such as energy detectors, cyclo-stationary detectors suffer from various problems such as complexity, non-responsive behaviors under low Signal to Noise Ratio (SNR) and computational overhead, which affects the performance of the sensing accuracy. Many algorithms such as Long-Short Term Memory (LSTM), Convolutional Neural… More >

  • Open Access

    ARTICLE

    IoT-Cloud Assisted Botnet Detection Using Rat Swarm Optimizer with Deep Learning

    Saeed Masoud Alshahrani1, Fatma S. Alrayes2, Hamed Alqahtani3, Jaber S. Alzahrani4, Mohammed Maray5, Sana Alazwari6, Mohamed A. Shamseldin7, Mesfer Al Duhayyim8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3085-3100, 2023, DOI:10.32604/cmc.2023.032972

    Abstract Nowadays, Internet of Things (IoT) has penetrated all facets of human life while on the other hand, IoT devices are heavily prone to cyberattacks. It has become important to develop an accurate system that can detect malicious attacks on IoT environments in order to mitigate security risks. Botnet is one of the dreadful malicious entities that has affected many users for the past few decades. It is challenging to recognize Botnet since it has excellent carrying and hidden capacities. Various approaches have been employed to identify the source of Botnet at earlier stages. Machine Learning (ML) and Deep Learning (DL)… More >

  • Open Access

    ARTICLE

    Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features

    Siva Sankari Subbiah1, Senthil Kumar Paramasivan2,*, Karmel Arockiasamy3, Saminathan Senthivel4, Muthamilselvan Thangavel2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3829-3844, 2023, DOI:10.32604/iasc.2023.030480

    Abstract Wind speed forecasting is important for wind energy forecasting. In the modern era, the increase in energy demand can be managed effectively by forecasting the wind speed accurately. The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty, the curse of dimensionality, overfitting and non-linearity issues. The curse of dimensionality and overfitting issues are handled by using Boruta feature selection. The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory (Bi-LSTM). In this paper, Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed… More >

  • Open Access

    ARTICLE

    Routing with Cooperative Nodes Using Improved Learning Approaches

    R. Raja1,*, N. Satheesh2, J. Britto Dennis3, C. Raghavendra4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2857-2874, 2023, DOI:10.32604/iasc.2023.026153

    Abstract In IoT, routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance. The evaluation of optimal routing and related routing parameters over the deployed network environment is challenging. This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory (s − LSTM) and Bi-directional Long Short Term Memory (b − LSTM). It is used to hold the routing information and random routing to attain superior performance. The proposed model is trained based on the searching and detection mechanisms to compute the packet delivery ratio (PDR), end-to-end (E2E) delay, throughput, etc. The anticipated… More >

  • Open Access

    ARTICLE

    Harnessing LSTM Classifier to Suggest Nutrition Diet for Cancer Patients

    S. Raguvaran1,*, S. Anandamurugan2, A. M. J. Md. Zubair Rahman3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2171-2187, 2023, DOI:10.32604/iasc.2023.028605

    Abstract A customized nutrition-rich diet plan is of utmost importance for cancer patients to intake healthy and nutritious foods that help them to be strong enough to maintain their body weight and body tissues. Consuming nutrition-rich diet foods will prevent them from the side effects caused before and after treatment thereby minimizing it. This work is proposed here to provide them with an effective diet assessment plan using deep learning-based automated medical diet system. Hence, an Enhanced Long-Short Term Memory (E-LSTM) has been proposed in this paper, especially for cancer patients. This proposed method will be very useful for cancer patients… More >

  • Open Access

    ARTICLE

    Enhanced Long Short Term Memory for Early Alzheimer's Disease Prediction

    M. Vinoth Kumar1,*, M. Prakash2, M. Naresh Kumar3, H. Abdul Shabeer4

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1277-1293, 2023, DOI:10.32604/iasc.2023.025591

    Abstract The most noteworthy neurodegenerative disorder nationwide is apparently the Alzheimer's disease (AD) which ha no proven viable treatment till date and despite the clinical trials showing the potential of preclinical therapy, a sensitive method for evaluating the AD has to be developed yet. Due to the correlations between ocular and brain tissue, the eye (retinal blood vessels) has been investigated for predicting the AD. Hence, en enhanced method named Enhanced Long Short Term Memory (E-LSTM) has been proposed in this work which aims at finding the severity of AD from ocular biomarkers. To find the level of disease severity, the… More >

  • Open Access

    ARTICLE

    A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks

    G. Nagalalli*, G. Ravi

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 475-490, 2023, DOI:10.32604/iasc.2023.026571

    Abstract Wireless Sensor Network (WSN), which finds as one of the major components of modern electronic and wireless systems. A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing, data processing, and communication. In the field of medical health care, these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network. But the fear of different attacks on health care data typically increases day by day. In a very short period, these attacks may cause adversarial effects to the… More >

Displaying 1-10 on page 1 of 23. Per Page  

Share Link