Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (836)
  • Open Access

    ARTICLE

    Fully Automated Density-Based Clustering Method

    Bilal Bataineh*, Ahmad A. Alzahrani

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1833-1851, 2023, DOI:10.32604/cmc.2023.039923

    Abstract Cluster analysis is a crucial technique in unsupervised machine learning, pattern recognition, and data analysis. However, current clustering algorithms suffer from the need for manual determination of parameter values, low accuracy, and inconsistent performance concerning data size and structure. To address these challenges, a novel clustering algorithm called the fully automated density-based clustering method (FADBC) is proposed. The FADBC method consists of two stages: parameter selection and cluster extraction. In the first stage, a proposed method extracts optimal parameters for the dataset, including the epsilon size and a minimum number of points thresholds. These parameters are then used in a… More >

  • Open Access

    ARTICLE

    Machine Learning-Enabled Communication Approach for the Internet of Medical Things

    Rahim Khan1,3, Abdullah Ghani1, Samia Allaoua Chelloug2,*, Mohammed Amin4, Aamir Saeed5, Jason Teo1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1569-1584, 2023, DOI:10.32604/cmc.2023.039859

    Abstract The Internet of Medical Things (IoMT) is mainly concerned with the efficient utilisation of wearable devices in the healthcare domain to manage various processes automatically, whereas machine learning approaches enable these smart systems to make informed decisions. Generally, broadcasting is used for the transmission of frames, whereas congestion, energy efficiency, and excessive load are among the common issues associated with existing approaches. In this paper, a machine learning-enabled shortest path identification scheme is presented to ensure reliable transmission of frames, especially with the minimum possible communication overheads in the IoMT network. For this purpose, the proposed scheme utilises a well-known… More >

  • Open Access

    ARTICLE

    Developed Fall Detection of Elderly Patients in Internet of Healthcare Things

    Omar Reyad1,2, Hazem Ibrahim Shehata1,3, Mohamed Esmail Karar1,4,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1689-1700, 2023, DOI:10.32604/cmc.2023.039084

    Abstract Falling is among the most harmful events older adults may encounter. With the continuous growth of the aging population in many societies, developing effective fall detection mechanisms empowered by machine learning technologies and easily integrable with existing healthcare systems becomes essential. This paper presents a new healthcare Internet of Health Things (IoHT) architecture built around an ensemble machine learning-based fall detection system (FDS) for older people. Compared to deep neural networks, the ensemble multi-stage random forest model allows the extraction of an optimal subset of fall detection features with minimal hyperparameters. The number of cascaded random forest stages is automatically… More >

  • Open Access

    ARTICLE

    Priority Detector and Classifier Techniques Based on ML for the IoMT

    Rayan A. Alsemmeari1,*, Mohamed Yehia Dahab2, Badraddin Alturki1, Abdulaziz A. Alsulami3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1853-1870, 2023, DOI:10.32604/cmc.2023.038589

    Abstract Emerging telemedicine trends, such as the Internet of Medical Things (IoMT), facilitate regular and efficient interactions between medical devices and computing devices. The importance of IoMT comes from the need to continuously monitor patients’ health conditions in real-time during normal daily activities, which is realized with the help of various wearable devices and sensors. One major health problem is workplace stress, which can lead to cardiovascular disease or psychiatric disorders. Therefore, real-time monitoring of employees’ stress in the workplace is essential. Stress levels and the source of stress could be detected early in the fog layer so that the negative… More >

  • Open Access

    ARTICLE

    A Machine Learning-Based Distributed Denial of Service Detection Approach for Early Warning in Internet Exchange Points

    Salem Alhayani*, Diane R. Murphy

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2235-2259, 2023, DOI:10.32604/cmc.2023.038003

    Abstract The Internet service provider (ISP) is the heart of any country’s Internet infrastructure and plays an important role in connecting to the World Wide Web. Internet exchange point (IXP) allows the interconnection of two or more separate network infrastructures. All Internet traffic entering a country should pass through its IXP. Thus, it is an ideal location for performing malicious traffic analysis. Distributed denial of service (DDoS) attacks are becoming a more serious daily threat. Malicious actors in DDoS attacks control numerous infected machines known as botnets. Botnets are used to send numerous fake requests to overwhelm the resources of victims… More >

  • Open Access

    ARTICLE

    Increasing Crop Quality and Yield with a Machine Learning-Based Crop Monitoring System

    Anas Bilal1,*, Xiaowen Liu1, Haixia Long1,*, Muhammad Shafiq2, Muhammad Waqar3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2401-2426, 2023, DOI:10.32604/cmc.2023.037857

    Abstract Farming is cultivating the soil, producing crops, and keeping livestock. The agricultural sector plays a crucial role in a country’s economic growth. This research proposes a two-stage machine learning framework for agriculture to improve efficiency and increase crop yield. In the first stage, machine learning algorithms generate data for extensive and far-flung agricultural areas and forecast crops. The recommended crops are based on various factors such as weather conditions, soil analysis, and the amount of fertilizers and pesticides required. In the second stage, a transfer learning-based model for plant seedlings, pests, and plant leaf disease datasets is used to detect… More >

  • Open Access

    ARTICLE

    Modified Dragonfly Optimization with Machine Learning Based Arabic Text Recognition

    Badriyya B. Al-onazi1, Najm Alotaibi2, Jaber S. Alzahrani3, Hussain Alshahrani4, Mohamed Ahmed Elfaki4, Radwa Marzouk5, Mahmoud Othman6, Abdelwahed Motwakel7,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1537-1554, 2023, DOI:10.32604/cmc.2023.034196

    Abstract Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes. When the number of labels is limited to one, the task becomes single-label text categorization. The Arabic texts include unstructured information also like English texts, and that is understandable for machine learning (ML) techniques, the text is changed and demonstrated by numerical value. In recent times, the dominant method for natural language processing (NLP) tasks is recurrent neural network (RNN), in general, long short term memory (LSTM) and convolutional neural network (CNN). Deep learning (DL) models are currently presented for deriving… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Models for PDF Malware Detection: Evaluating Different Training and Testing Criteria

    Bilal Khan1, Muhammad Arshad2, Sarwar Shah Khan3,4,*

    Journal of Cyber Security, Vol.5, pp. 1-11, 2023, DOI:10.32604/jcs.2023.042501

    Abstract The proliferation of maliciously coded documents as file transfers increase has led to a rise in sophisticated attacks. Portable Document Format (PDF) files have emerged as a major attack vector for malware due to their adaptability and wide usage. Detecting malware in PDF files is challenging due to its ability to include various harmful elements such as embedded scripts, exploits, and malicious URLs. This paper presents a comparative analysis of machine learning (ML) techniques, including Naive Bayes (NB), K-Nearest Neighbor (KNN), Average One Dependency Estimator (A1DE), Random Forest (RF), and Support Vector Machine (SVM) for PDF malware detection. The study… More >

  • Open Access

    ARTICLE

    Explainable AI and Interpretable Model for Insurance Premium Prediction

    Umar Abdulkadir Isa*, Anil Fernando*

    Journal on Artificial Intelligence, Vol.5, pp. 31-42, 2023, DOI:10.32604/jai.2023.040213

    Abstract Traditional machine learning metrics (TMLMs) are quite useful for the current research work precision, recall, accuracy, MSE and RMSE. Not enough for a practitioner to be confident about the performance and dependability of innovative interpretable model 85%–92%. We included in the prediction process, machine learning models (MLMs) with greater than 99% accuracy with a sensitivity of 95%–98% and specifically in the database. We need to explain the model to domain specialists through the MLMs. Human-understandable explanations in addition to ML professionals must establish trust in the prediction of our model. This is achieved by creating a model-independent, locally accurate explanation… More >

  • Open Access

    ARTICLE

    Discovering the Common Traits of Cybercrimes in Pakistan Using Associative Classification with Ant Colony Optimization

    Abdul Rauf1, Muhammad Asif Khan1,*, Hamid Hussain Awan2, Waseem Shahzad3, Najeeb Ul Husaan4

    Journal of Cyber Security, Vol.4, No.4, pp. 201-222, 2022, DOI:10.32604/jcs.2022.038791

    Abstract In the modern world, law enforcement authorities are facing challenges due to the advanced technology used by criminals to commit crimes. Criminals follow specific patterns to carry out their crimes, which can be identified using machine learning and swarm intelligence approaches. This article proposes the use of the Ant Colony Optimization algorithm to create an associative classification of crime data, which can reveal potential relationships between different features and crime types. The experiments conducted in this research show that this approach can discover various associations among the features of crime data and the specific patterns that major crime types depend… More >

Displaying 11-20 on page 2 of 836. Per Page